第4章-机器人雅可比矩阵2课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第4章-机器人雅可比矩阵2课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器人 可比 矩阵 课件
- 资源描述:
-
1、 首先来看一个两自由度的首先来看一个两自由度的平面机械手,如图平面机械手,如图3-17所示。所示。图图3-17 两自由度平面机械手两自由度平面机械手 容易求得容易求得将其微分得将其微分得写成矩阵形式写成矩阵形式1221112211slslyclclx211221221112212211ddclclclslslsldydx 假设关节速度为假设关节速度为 ,手爪速度为,手爪速度为 。简写成简写成 : dx=Jd。式中式中J就称为机械手的雅可比(就称为机械手的雅可比(Jacobian)矩阵矩阵,它由函数,它由函数x,y的偏微分组成,反映了关节微小位移的偏微分组成,反映了关节微小位移d与手部(手爪)微
2、小运与手部(手爪)微小运动动dx之间的关系。之间的关系。对对dx=Jd两边同除以两边同除以dt,得得Jv Jx可以更一般的写成可以更一般的写成 。 因此机械手的雅可比矩阵定义为它的操作空间速度与关节空因此机械手的雅可比矩阵定义为它的操作空间速度与关节空间速度的线性变换。间速度的线性变换。 (或(或v)称为手爪在操作空间中的广义速度,称为手爪在操作空间中的广义速度,简称操作速度,简称操作速度, 为关节速度。为关节速度。 J若是若是6n的偏导数矩阵,它的第的偏导数矩阵,它的第i行第行第j列的元素为列的元素为 :njiqqxqJjiij,.,2 , 1; 6,.,2 , 1,)()(式中,式中,x代
3、表操作空间,代表操作空间,q代表关节空间。代表关节空间。 若令若令J1,J2分别为上例中雅可比矩阵的第一列矢量和第二列分别为上例中雅可比矩阵的第一列矢量和第二列矢量,即矢量,即2121JJx可以看出,可以看出,雅可比矩阵的每一列表示其它关节不动而某一关节以雅可比矩阵的每一列表示其它关节不动而某一关节以单位速度运动产生的端点速度。单位速度运动产生的端点速度。由由 ,可以看出,可以看出,J阵的值随手爪位置的阵的值随手爪位置的不同而不同,即不同而不同,即1和和2的改变会导致的改变会导致J的变化。的变化。1221221112212211clclclslslslJ 对于关节空间的某些形位,机械手的雅可比
4、矩阵的秩减少,对于关节空间的某些形位,机械手的雅可比矩阵的秩减少,这些形位称为操作臂(机械手)的这些形位称为操作臂(机械手)的奇异形位。奇异形位。上例机械手雅可比上例机械手雅可比矩阵的行列式为:矩阵的行列式为:det(J)=l1l2s2 当当2=0或或2=180时,机械时,机械手的雅可比行列式为手的雅可比行列式为0,矩阵的秩,矩阵的秩为为1,因此处于奇异状态。在奇异,因此处于奇异状态。在奇异形位时,形位时,机械手在操作空间的自机械手在操作空间的自由度将减少。由度将减少。 只要知道机械手的雅可比只要知道机械手的雅可比J是满秩的方阵,相应的关节速度即是满秩的方阵,相应的关节速度即可求出,即可求出,
5、即 。 上例平面上例平面2R机械手的逆雅可比机械手的逆雅可比于是得到与末端速度于是得到与末端速度 相应的关节速度:相应的关节速度:显然,当显然,当2趋于趋于0(或(或180)时,机械手接近奇异形位,相应)时,机械手接近奇异形位,相应的关节速度将趋于无穷大。的关节速度将趋于无穷大。122111221112212222111slslclclslclsl lJ4.1.2 微分变换微分变换 为了补偿机器人为了补偿机器人末端执行器位姿与目标物体之间的误差末端执行器位姿与目标物体之间的误差,以,以及解决及解决两个不同坐标系之间的微位移关系两个不同坐标系之间的微位移关系问题,需要讨论机器人问题,需要讨论机器
6、人杆件在作微小运动时的位姿变化。杆件在作微小运动时的位姿变化。一一.变换的微分变换的微分 假设一变换的元素是某个变量的函数,对该变换的微分就是假设一变换的元素是某个变量的函数,对该变换的微分就是该变换矩阵各元素对该变量的偏导数所组成的变换矩阵乘以该变该变换矩阵各元素对该变量的偏导数所组成的变换矩阵乘以该变量的微分量的微分。若它的元素是变量若它的元素是变量x的函数,则变换的函数,则变换T的微分为的微分为:例如给定变换例如给定变换T为:为:44434241343332312423222114131211ttttttttttttttttTdxxtxtxtxtxtxtxtxtxtxtxtxtxtxtx
7、txtdT44434241343332312423222114131211二二. 微分运动微分运动所以得所以得 设机器人某一杆件相对于基坐标系的位姿为设机器人某一杆件相对于基坐标系的位姿为T,经过微运动经过微运动后该杆件相对基坐标系的位姿变为后该杆件相对基坐标系的位姿变为T+dT,若这个微运动是若这个微运动是相对相对于基坐标系(静系)进行的于基坐标系(静系)进行的(左乘左乘),总可以用微小的平移和旋转总可以用微小的平移和旋转来表示,即来表示,即TdkRotdddTransdTTzyx),(),(TIdkRotdddTransdTzyx44),(),(根据齐次变换的相对性,若微运动是根据齐次变换
8、的相对性,若微运动是相对某个杆件坐标系相对某个杆件坐标系i(动系)动系)进行的进行的(右乘右乘),则则T+dT可以表示为可以表示为则相对基系有则相对基系有dT=0T,相对相对i系有系有dT=Ti 。这里这里的下标不同是由的下标不同是由于微运动相对不同坐标系进行的。于微运动相对不同坐标系进行的。(,)( ,)xyzTdTT Trans d dd Rot k d所以得所以得44),(),(IdkRotdddTransTdTzyx令令 为微分算子为微分算子44),(),(IdkRotdddTranszyx三三.微分平移和微分旋转微分平移和微分旋转 由于微分旋转由于微分旋转0 ,所以所以sind,co
9、s1,Vers0,将将它们代入旋转变换通式它们代入旋转变换通式(p27)中得微分旋转表达式中得微分旋转表达式: 微分平移变换与一般平移微分平移变换与一般平移变换一样,其变换矩阵为变换一样,其变换矩阵为:于是得微分算子于是得微分算子1000100010001),(dzdydxdzdydxTrans1000010101),(dkdkdkdkdkdkdkRotxyxzyz44),(),(IdkRotdddTranszyx0000000dzdkdkdydkdkdxdkdkxyxzyz四四. 微分旋转的无序性微分旋转的无序性 当当0 时,有时,有sind,cos1若令若令x=dx,y=dy,z=dz,则
10、绕三个坐标轴则绕三个坐标轴(p16)的微分旋转矩阵分别为的微分旋转矩阵分别为10000100100001),(xxxxRot10000100010001),(yyyyRot10000100001001),(zzzzRot10000101001),(),(xyxyxyyyRotxxRot100001010001xyxy10000101001),(),(xyxyyxxxRotyyRot100001010001xyxy略去高略去高阶无穷阶无穷小量小量两者结果相同,可见这里两者结果相同,可见这里。同理可得同理可得 1000010101),(),(),(xyxzyzzzRotyyRotxxRot 若若R
展开阅读全文