三角形四心的向量表示课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《三角形四心的向量表示课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 向量 表示 课件
- 资源描述:
-
1、三角形三角形“四心四心”的向量表的向量表示示一、一、 外心外心ABCABCABCABCABCABCABC三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心外心。 证明外心定理证明外心定理证明证明: 设设AB、BC的中垂线交于点的中垂线交于点O, 则有则有OA=OB=OC, 故故O也在也在AC的中垂线上,的中垂线上, 因为因为O到三顶点的距离相等,到三顶点的距离相等, 故点故点O是是ABC外接圆的圆心外接圆的圆心 因而称为外心因而称为外心OO点评:点评:本题将本题将平面向量平面向量模的定义与模的定义与三角形三角形外心外心 的定
2、义及性质等相关知识巧妙结合。的定义及性质等相关知识巧妙结合。OABCOABC到到的三顶点距离相等。的三顶点距离相等。故故 是是解析:解析:由向量模的定义知由向量模的定义知的外心的外心 ,选,选B。ABC O是是的外心的外心OABCOAOBOC OABC若若 为为内一点,内一点,则则 是是 的(的( ) A内心内心 B外心外心 C垂心垂心 D重心重心222OAOBOCOAOBOC ()()()OAOBABOBOCBCOCOA CA 0B例例1如图,如图,AD、BE、CF是是ABC的三条高,的三条高, 求证:求证:AD、BE、CF相交于一点。相交于一点。ABCDEFH,BHAC CHAB ()0(
3、)()()0.()0h a bh a bh b ah b ah b a .AHBC 又又点点D在在AH的延长线上,的延长线上,AD、BE、CF相交于一点相交于一点 ,ABa ACb AHh 令,BHh a CHh b BCb a 则证:证:设设BE、CF交于一点交于一点H, 垂心垂心ABC OAOCOCOBOBOA 1.O是是的垂心的垂心2.()|cos|cosABACABBACC 0,)是是ABC的边的边BC的高的高AD上的任意向量,过垂心上的任意向量,过垂心.12例例3 O是平面上一定点,是平面上一定点,A、B、C是平面上不共线的三个点,是平面上不共线的三个点, 动点动点 P 满足满足()
4、,|cos|cosABACOPOAABBACC ()|cos|cos|cos|cosABACBC ABBC ACBCABBACCABBACC | |cos() | |cos| | 0|cos|cosBCABBBCACCBCBCABBACC ()|cos|cosABACBCABBACC ()|cos|cosABACABBACC ()|cos|cosABACOPOAABBACC 则则P的轨迹一定通过的轨迹一定通过ABC的的 _ 在在ABC的边的边BC的高的高AD上上.P的轨迹一定通过的轨迹一定通过ABC的的垂心垂心.所以,所以,时,时,解解:OCOBOBOA解解: 例例4.点点O是是ABC所在平面
5、上一点,所在平面上一点, 若若 , 则点则点O是是ABC的(的( )(A)三个内角的角平分线的交点)三个内角的角平分线的交点(B)三条边的垂直平分线的交点)三条边的垂直平分线的交点(C)三条中线的交点)三条中线的交点(D)三条高线的交点)三条高线的交点OAOCOCOBOBOA0)(OCOAOB0CAOBCAOB则则O在在CA边的高线上边的高线上,同理可得同理可得O在在CB边的高线上边的高线上.DOCBA 垂心垂心 5. P是是ABC所在平面上一点,若所在平面上一点,若 则则P是是ABC的(的( ) A外心外心B内心内心C重心重心D垂心垂心,PA PBPB PCPC PA D设中线BE,CF交于
6、点G,连结EF, 则EF/BC,且EF:BC=FG:GC=EG:GB=1:2. 同理中线AD,BE交于G ,连结DE,则: DE/AB,且EG :G B=DG :G A=DE:AB=1:2, 故G(,证明同一法:)G 重合.三、重心三、重心ABCABCABC三角形三边中线交于一点,这一点叫三角形的三角形三边中线交于一点,这一点叫三角形的重心重心。 证明重心定理证明重心定理 E F D GABC 0OCOBOA 3. O是是的重心的重心14.()3PGPAPBPC GABC为为的重心的重心.1.(),0,)ABAC 是是BC边上的中线边上的中线AD上的任意向量,过重心上的任意向量,过重心.ABC
7、1,2ADABAC ABC2.在在中,给出中,给出等于已知等于已知AD是是中中BC边的中线边的中线;1()3PGPAPBPC 例例1 P是是ABC所在平面内任一点所在平面内任一点.G是是ABC的重心的重心CGPCBGPBAGPAPG3()()PGAGBGCGPAPBPC 0GAGBGC 0,AGBGCG 证明证明: G是是ABC的重心的重心PCPBPAPG3)(31PCPBPAPG即即由此可得由此可得(反之亦然(证略)(反之亦然(证略)1()3OGOA OB OC 思考:思考: 若若O为为ABC外心,外心,G是是ABC的重心,则的重心,则_.OGO为为ABC的内心、垂心呢?的内心、垂心呢?例例
8、2证明:三角形证明:三角形重心重心与顶点的距离等于它到对边中点距离的两倍与顶点的距离等于它到对边中点距离的两倍 A B C E F D G11,.22ACb CBaADAC CD ba EBEC CBb a 则证:设证:设A, G, D共线,共线,B, G, E共线共线,.AGAD EGEB 可设可设即:即:AG = 2GD 同理可得:同理可得:AG = 2GD , CG = 2GF 11(),2211().22AGADbabaEGEBbaba 则,AE EGAG ADAG32313202121021111:().222bbaba即111()()0.,222aba b 不平行, 重心重心例例2
9、证明:三角形证明:三角形重心重心与顶点的距离等于它到对边中点距离的两倍与顶点的距离等于它到对边中点距离的两倍另证另证:连结EF,则EF为 ABC的中位线,EF/BC,且EF:BC=1:2,由平行线分线段成比例得 FG:GC=1:2,同样可得 EG:GB=1:2, DG:GA=1:2. A B C E F D G 重心重心想想看?想想看?四、内心四、内心ABCABCABCABCABC三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心内心。证明内心定理证明内心定理证明证明 : : 设设A A、C C的平分线相交于的平分线相交于I
10、,I, 过过I I作作IDBCIDBC,IEACIEAC, IFAB IFAB,则有,则有IE=IF=IDIE=IF=ID 因此因此I I也在也在C C的平分线上,的平分线上, 即三角形三内角平分线即三角形三内角平分线 交于一点交于一点I II I E F D1.设设a,b,c是三角形的三条边长,是三角形的三条边长,O是三角形是三角形ABC内心内心的的 充要条件是充要条件是0OCcOBbOAa |0BC OACA OBAB OC ACBO Oa ab bc cA AB BA AC CO OP P = = O OA A + +( (+ +) ), , 0 0, ,+ +) ). .| |A AB
11、 B| | | |A AC C| | 2. O是平面上一定点,是平面上一定点,A、B、C是平面上不共线的三个点,是平面上不共线的三个点, 动点动点P P满足满足 则则P的轨迹一定通过的轨迹一定通过ABC的(的( ) A外心外心 B内心内心 C重心重心 D垂心垂心B 内心内心(),|ABACRABAC 是是BAC的角平分线上的任意向量,过内心;的角平分线上的任意向量,过内心; 3.(20062006陕西)陕西)已知非零向量已知非零向量 与与 满足满足 则则ABCABC为(为( ) A A三边均不相等的三角形三边均不相等的三角形 B B直角三角形直角三角形 C C等腰非等边三角形等腰非等边三角形
12、D D等边三角形等边三角形AB AC1()0,2| |ABACABACBCABACABAC 且解法一:解法一:根据四个选择项的特点,本题可采用验证法来处理根据四个选择项的特点,本题可采用验证法来处理. 不妨先验证等边三角形,刚好适合题意,则可同时不妨先验证等边三角形,刚好适合题意,则可同时 排除其他三个选择项,故答案必选排除其他三个选择项,故答案必选 D.D 解法二:解法二:由于由于 所在直线穿过所在直线穿过ABCABC的内心,的内心,则由则由 ( (等腰三角形的三线合一定理等腰三角形的三线合一定理) );又;又 ,所以所以 , ,即即ABCABC为等边三角形,故答案选为等边三角形,故答案选D
13、.D.3A|ABACABAC ()0|ABACBCABACABAC 知 |= |12| |ABACABAC 注注: 等边三角形等边三角形(即即正三角形正三角形)的的“外心、垂心、外心、垂心、 重心、内心、中心重心、内心、中心 ” 五心合一!五心合一! 法一抓住了该题选择项的特点而采用了法一抓住了该题选择项的特点而采用了验证法验证法,是处理本题的巧妙方法;法二要求学生能领会一些是处理本题的巧妙方法;法二要求学生能领会一些向向量表达式与三角形某个量表达式与三角形某个“心心”的关系,的关系,如如 所在直线一定通过所在直线一定通过ABCABC的内心的内心; ; 所在所在直线过直线过BCBC边的中点,从
14、而一定通过边的中点,从而一定通过ABCABC的重心;的重心; 所在直线一定通过所在直线一定通过ABCABC的垂心等的垂心等. .|ABACABAC ABAC | cos| cosABACABBACC 【总结总结】(1).是用数量积给出的三角形面积公式是用数量积给出的三角形面积公式; (2).则是用向量坐标给出的三角形面积公式则是用向量坐标给出的三角形面积公式. 4. 在在ABC中中: (1)若若CAa,CBb,求证,求证ABC的面积的面积 (2)若若CA(a1,a2 ),CB(b1,b2 ), 求证:求证:ABC的面积的面积 2221babaS122121babaS解解:22(1).cos(1
15、cos)sinS2222211221122aba babababab222212121 12 21 22 11 22 1(2).|Saabbabababababab222211221122由(1)知:a ba b5.222 例如 图 ,在ABC内 求 一 点 P,使 得 : |AP| +|BP| +|CP| 的 值 最 小 .ABC P222222222.|()()23()()3APBPCPb 设AP=m, AB=a, AC=b,则BP=m-a, CP=m-bmmambamaba b3解:b222a当 m =时 , 即 P 为A B C 的 重 心 时 ,3| A P | + | B P |
16、+ | C P | 的 值 最 小 .费 尔 马 点 ( 即 正 等 角 中 心 -当 | A P | + | B P | +- - - P 对 三扩 展 :顶 点 A| C P, B ,| 的 值 最 小 时 , 点C 的 张 角 均 为 1 2P 是A B C0的) .ABC230,OAOBOC 思考思考: 如图,设点如图,设点O在在内部,且有内部,且有则则 ABCAOC的面积与的面积与的面积的比为的面积的比为_ 3作作AC、BC边上的中点边上的中点E、D,2(1)(1) 2(2)2(2)232(2)0.| |,2,22 1122233 43COECODAOCCOECDEABCOBOCOD
17、OA OCOEOAOBOCODOEOD OEODOE SSSSSSS 与共线且2|ABC解解1:DEABC O历史岳麓版第13课交通与通讯的变化资料精品课件欢迎使用自读教材自读教材填要点填要点 一、铁路,更多的铁路一、铁路,更多的铁路 1地位地位 铁路是铁路是 建设的重点,便于国计民生,成为国民经济建设的重点,便于国计民生,成为国民经济发展的动脉。发展的动脉。 2出现出现 1881年,中国自建的第一条铁路年,中国自建的第一条铁路唐山唐山 至胥各庄铁至胥各庄铁路建成通车。路建成通车。 1888年,年,宫廷宫廷专用铁路落成。专用铁路落成。交通运输交通运输开平开平 3发展发展 (1)原因:原因: 甲
18、午战争以后列强激烈争夺在华铁路的甲午战争以后列强激烈争夺在华铁路的 。 修路成为中国人修路成为中国人 的强烈愿望。的强烈愿望。 (2)成果:成果:1909年年 建成通车;民国以后,各条商路修筑建成通车;民国以后,各条商路修筑权收归国有。权收归国有。 4制约因素制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入正轨。正轨。修筑权修筑权救亡图存救亡图存京张铁路京张铁路 二、水运与航空二、水运与航空 1水运水运 (1)1872年年, 正式成立,标志着中国新式航运业的诞生。正式成立,标志着中国新式航运业的诞生。 (2)1900年前后,民间兴办
展开阅读全文