第九章常用试验设计方法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第九章常用试验设计方法课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九 常用 试验 设计 方法 课件
- 资源描述:
-
1、1生物学试验研究中,一项工作要取得客观、理想的结果,必须做到试验方案设计合理,精心组织操作,采用相应的统计方法对试验结果进行分析。本章主要讨论试验设计的基本原理和常用试验设计方法2制定试验方案的要点制定试验方案的要点3广义的试验设计广义的试验设计是指整个研究课题的设计,包括试验方案的拟订,试验单位的选择,分组的排列,试验过程中生物性状和试验指标的观察记载,试验资料的整理、分析等内容;狭义的试验设计狭义的试验设计则仅是指试验单位的选择、分组与排列方法。4合理的试验设计对科学试验是非常重要的。它不仅能够节省人力、物力、财力和时间,更重要的是它能够减少试验误差,无偏估计误差,提高试验的精确度,取得真
2、实可靠的试验资料,为统计分析得出正确的判断和结论打下基础。51 1、试验目的要明确、试验目的要明确明确选题,制定合理的实验方案。一是要抓住当时生产实践和科学实验中急需解决的问题,二是要照顾到长远和不久的将来可能突出的问题。2 2、试验条件要有代表性、试验条件要有代表性试验条件应能代表将来准备推广试验结果的地区的自然条件、经济和社会条件。63 3、试验结果要可靠、试验结果要可靠试验结果的可靠程度主要用准确度与精确度进行描述。准确度指观察值与真值的接近程度,由于真值是未知数,准确度不容易确定,故常设置对照处理,通过与对照相比以了解结果的相对准确程度。精确度是指试验中同一性状的重复观察值彼此接近的程
3、度,即试验误差的大小,它是可以计算的。试验误差越小,处理间的比较越精确。74 4、试验结果要能够重演、试验结果要能够重演指在相同条件下,再次进行试验或实验,应能获得与原试验相同的结果。注意保持试验条件的一致性。8试验设计包括三个基本组成部分,即:处理因素、受试对象和处理效应。1.处理因素处理因素一般是指对受试对象给予的某种外部干预(或措施),称为处理因素,简称处理处理。试验因素:试验因素:在科学试验中,被变动的并设有待比较的一组处理的因子称为试验因素,简称因素或因子(factor)。9水平:水平:试验因素的量的不同级别或质的不同状态称为水平(level)。试验水平可以是定性的,如供试的不同品种
4、,具有质的区别,称为质量水平质量水平;也可以是定量的,如N肥的施用量,具有量的差异,称为数量水平数量水平。单因素试验单因素试验(single-factor experiment):整个试验中只变更、比较一个试验因素的不同水平,其它作为试验条件的因素均严格控制一致的试验。10多多因素试验因素试验(multiple-factor or factorial experiment):在同一试验方案中包含两个或两个以上的试验因素,各个因素都分为不同水平,其它试验条件严格控制一致的试验。2.受试对象受试对象受试对象是处理因素的客体,实际上就是根据研究目的而确定的观测总体。试验指标:试验指标:用于衡量试验效
5、果的指标性状称为试试验指标验指标(experimental indicator)。113.3.处理效应处理效应处理效应是处理因素作用于受试对象的反应,是研究结果的最终体现。简单效应简单效应(simple effect):同一因素内两种水平间试验指标的差数。主要效应主要效应(main effect):一个因素内各简单效应的平均数,又称平均效应,简称主效。交互作用交互作用(interaction effect):两个因素简单效应间的平均差异称为交互作用效应,简称互作12PNN1N2平均N2N1P11016136P21824216平均14206P2P18880,0/2=013PNN1N2平均N2N1
6、P11016136P218282310平均14228P2P1812104/2=214PNN1N2平均N2N1P11016136P21814164平均14151P2P182310/2=5两个因素间的互作称为一级互作一级互作,三个因素间的互作称为二级互作二级互作,余类推。一级互作易于理解,实际意义明确。二级以上的互作较难理解,实际意义不大。159.1.4 制定试验方案的要点制定试验方案的要点试验方案:是根据试验目的和要求所拟进行比较的一组试验处理(treatment)的总称。1 1、明确试验目的、明确试验目的通过回顾以往的研究进展、调查研究、文献探索等明确试验的目的,形成对所研究主题及外延的设想,
7、使待拟订的试验方案能针对主题确切而有效地解决问题。162 2、根据试验目的确定恰当的供试因素及水平、根据试验目的确定恰当的供试因素及水平供试因素不宜过多,应该抓住1-2个或少数几个主要因素解决关键性问题。每因素的水平数目也不宜多,且各水平间距要适当,使各水平能明确区分,并把最佳水平范围包括在内。例如通过喷施矮壮素控制玉米株高,其浓度试验设置为50、100、150、200、250mg/L等5个水平,其间距为50mg/L。如果将间距缩小为10mg/L,水平数猛增到20个。17这会导致两方面的问题:一是实验无法进行;二是受误差影响不容易发现试验效应的规律。3、试验方案中应包括对照水平或处理试验方案中
8、应包括对照水平或处理(check, CK)对照是试验中比较处理效应的基准。品种比较试验中常统一规定同生态区内使用的对照品种。4、注意比较间的唯一差异性原则,才能正确解注意比较间的唯一差异性原则,才能正确解析出试验因素的效应析出试验因素的效应。18例如,在对小麦进行叶面喷施P肥的试验中,如果只设施P(A)与不施P(B)两个处理,因为P肥是兑在水中然后喷到小麦叶面上的,两者的差异可能有P的作用,也可能有水的作用,无法将它们区分开。如果再加入一个喷施等量清水的处理(C),则P和水的作用可分别从A与C及B与C的比较中解析出来。5 5、正确处理试验因素与试验条件间的关系、正确处理试验因素与试验条件间的关
9、系(1)试验因素的表现受试验条件的制约(2)注意试验条件的代表性与典型性196 6、尽量用多因素试验、尽量用多因素试验(1)在同一试验中提供了比单因素试验更多的效应估计;(2)误差自由度多,试验精确度提高。201.1.试验误差的来源试验误差的来源(1)试验材料固有的差异如基因型不一致、种子生活力有差异、秧苗素质有差异等(2)试验条件不一致如各试验单位所处的外部环境不一致。田间试验中农事操作和管理技术的不一致。(3)操作技术不一致(4)偶然因素的影响。212.2.控制试验误差的途径控制试验误差的途径(1) 选择同质一致的试验材料。(2)改进操作和管理技术,使之标准化。(3)精心选择试验单位。各试
10、验单位的性质和组成要求均匀一致。(4)采用合理的试验设计。22进行试验设计的目的,在于降低试验误差,无偏估计误差,提高试验的准确度与精确度,使试验结果正确可靠。为了有效地控制和降低误差,试验设计必须遵循下面三条基本原则。231.重复重复定义:重复重复(replication) 在试验中同一处理设置的试验单位数。作用:作用:(1)估计误差i=yi式中为总体平均数,是一个无法得到的理论值。在实际工作中,通常用样本的平均数来估计。而_y24单一小区所得数值易受特别高或低的肥力的影响,多次重复所估计的处理效应(平均数)可以抵消部分误差的影响,使处理间的比较更加可靠。nyyniii1_252.随机随机随
11、机 (random):指一个重复中每个处理都有同等的机会设置在任何一个试验单位上,避免任何主观成见。作用:使估计的误差无偏。方法:(1)抽签法(2)随机数字表 处理在9个以内,直接用随机数字表。中任意指定页中的任意一行的数字次序即可。例如:有8个处理,分别用1、2、3、4、5、6、7、8代表。在随机数字表中得到一行随机数字为:265264862339,9718302620去掉序列中的0、9和重复数字,得到:52648371这就是8个处理在区组内的排列顺序,即第一小区安排5号处理,第二小区安排2号处理,第三号小区安排6号处理,余类推。 多于9个的处理,从随机数字表中任意行开始,每次取两位数。如1
12、2个处理,可查任何一页的一行,去掉00、97、98、99后,凡大于12的数均被12除后得余数,将重复数字划去,即得到12个处理排列的次序。27去掉00、97、98、99这几个值是为了保证每个处理都有相同的次数被取到,12个处理,从01到96这些数字中,每个处理都可能取8次。例如:从随机表中取得97、39、24、89、90、89、86、49、15、18、25、43、80、74、30、41、67、36、43、58、42、07、04、25、17、54、60、88、49、34、42等随机数,除去97,大于12的数用12除后取余数,将重复数字划去,所得随机排列为:3 3、1212、5 5、6 6、2 2
13、、1 1、7 7、8 8、1010、4 4、9 9、1111283.3.局部控制局部控制将整个试验环境分解成若干个相对一致的小环境(称为区组、窝组或重复),再在小环境内分别配置一套完整的处理,在局部对非处理因素进行控制。作用:降低试验误差。方法:在田间试验中将试验田划分成等于重复数的区组,区组内的肥力水平尽可能保持一致;在温室试验中,将区组安排在同一光照水平上;在微生物接种试验中,将接种时间安排为区组。29三个基本原则的关系和作用重复无偏的试验误差估计随机局部控制降低试验误差3031completely random design)1、特点:使用了试验设计三个原则中的两个(重复、随机),能够得
14、到无偏的误差估计值,但控制试验环境误差的能力不强。2、常用于试验环境因素相当均匀的场合,如实验室培养试验、网室温室的盆钵试验。323 3、设计示例、设计示例有三种生长激素,分别用A、B、C代替,测定其对小麦株高的影响,包括对照(用等量的清水)在内,共4个处理,进行盆栽试验,每盆小麦为一个单元,每处理用4盆(重复4次)共16盆。第一步:用数字代表处理A:14,B:58,C:912,CK:1316第二步:抽签或查随机数字表,得到随机数字14、9、7、1、5、12、16、3、11、8、4、2、6、13、10、1533第三步:将随机数字对应的处理安排到相应的盆内。ckCBABCckACBAABckCc
15、k3435361、特点:特点:使用了田间试验设计三个原则,并根据“局部控制”的原则,将试验地按肥力程度划分为等于重复数的区组,一区组安排一重复,区组内各处理独立地随机排列。是田间试验最常用的设计。2、优缺点:、优缺点:优点:(1)设计简单,容易掌握;(2)富于伸缩性,单因素、多因素以及综合性试验都能用;(3)能提供无偏的误差估计,并有效减小单向的肥力差异,降低误差;37(4)对试验地要求不严,必要时,不同的区组可以分散设置在不同地段上。缺点:(1)设计不允许处理数太多,一般不超过20个;(2)只能在一个方向上控制土壤差异。383、设计示例设计示例(1) 8个处理,4次重复,共32个小区。肥力梯
16、度IIIIIIIV2514837651428673645372184524137839(2)16个处理,3次重复,小区布置成两排肥力梯度IIIIII13810715 1496134 16 11212540(3)区组布置在不同的地块上IIIIII411.资料整理处理处理区组区组I区组区组II区组区组IIITABA1B188824A1B277620A1B365617A2B199826A2B279622A2B387621A3B377621A3B287823A3B3109928Tr706863T=201(1)区组与处理的两向表42(2)品种(A)和密度(B)的两向表 BAB1B2B3TAA124201
17、761A226222169A320232871TB706566T=2012.自由度与平方和分解33.149633320122rabTC67.409882222CCySST43在A、B因素两向表的基础上对处理平方和进行再分解89. 2336368702222CCabTSSrR00.3032820242222CCrTSSABt78. 700.3089. 267.40tRTeSSSSSSSS4421.2256. 123. 600.3056. 13366657023. 63371696122222222BAtABBBAASSSSSSSSCCraTSSCCrbTSS453.方差分析表和F 测验变异来源D
18、FSSMSFF0.05区组间22.891.452.963.63处理(组合)间830.003.757.652.59 品种26.233.126.373.63 密度21.560.781.593.63 品种密度422.215.5511.333.01误差167.780.49总变异2640.674.差异显著性测验(1)品种间比较)(233. 0949. 0kgrbMSSEe46三个品种小区产量的新复极差测验pSSR0.05SSR0.01LSR0.05LSR0.0123.004.130.700.9633.154.340.731.01品种产量差异显著性5%1%A37.9aAA27.7aABA16.8bB47(
19、2)品种密度互作pSSR0.05SSR0.01LSR0.05LSR0.0123.004.131.211.6733.154.341.271.75)(404. 0349. 0kgrMSSEe各品种在不同密度下的小区平均产量及差异显著性品种产量差异显著性5%1%B18.0aAB26.7bABB35.7bB品种产量差异显著性5%1%B18.7aAB27.3bABB37.0bB品种产量差异显著性5%1%B39.3aAB27.7bABB16.7bBA1品种A2品种A3品种485.试验结论 本试验品种主效有显著差异,以A3产量最高,与A1有显著差异,而与A2差异不显著。密度主效无显著差异。但品种与密度的互作
20、极显著,A3品种需要用B3密度,A2品种需用B1密度,才能取得最高产量。4950将k个不同符号排成k列,使每个符号在每一行、每一列都仅出现一次的方阵,叫kk 拉丁方拉丁方1、特点:将处理从纵横两个方向排列成区组,具有双向局部控制的能力,因而有较高的精确度。2、优缺点:精度高,但缺乏伸缩性,因为在设计中,重复数必须等于处理数,两者相互制约。513、使用范围:只限于48个处理,不能象随机区组那样区组可以分开,故在田间试验时要求有整块平坦的土地。在动物实验中,如要控制来自两个方向的系统误差,且在动物头数较少情况下,常采用这种设计方法。524.设计示例研究5种不同饲料(分别用1,2,3,4,5号代表)
21、对乳牛产乳量影响试验,选择5头乳牛,每头乳牛的泌乳期分为5个阶段,随机分配5个饲料的5个水平。由于乳牛个体及牛的泌乳期不同对产乳量都会有影响,故可以分别把其作为区组设置(牛号用I至V表示,为横向区组;泌乳期用一月至五月表示,为纵向区组),采用一个55的拉丁方设计。53(1)选择标准方标准方:第一直行和第一横行均为顺序排列的拉丁方。A B C D EB A E C DC D A E BD E B A CE C D B A54(2)按随机数字1、4、5、3、2调整直行(对泌乳期区组进行随机)A B C D EB A E C DC D A E BD E B A CE C D B A选择标准方ABCD
22、E第1行DCEAB第4行EDBCA第5行CEABD第3行BADEC第2行55(3)按随机数字5、1、2、4、3调整横行(对号区组进行随机)A D E C BB C D E A C E B A DD A C B EE B A D C调整直行后的拉丁方E B A D C第5行A D E C B第1行B C D E A第2行D A C B E第4行C E B A D第3行56(4) 按随机数字2A、5B、4C、1D、3E,安排饲料。E B A D CA D E C BB C D E AD A C B EC E B A D调整横行后的拉丁方3521421345541321245343521一I二三四五
展开阅读全文