第九章-期权的定价课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第九章-期权的定价课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第九 期权 定价 课件
- 资源描述:
-
1、本章内容本章内容第一节期权价格的特性第二节期权定价的理论基础第三节布莱克舒尔斯期权定价模型第四节二叉树期权定价摸型第一节第一节 期权价格的特性期权价格的特性期权的内在价值期权的时间价值期权价格的影响因素期权价格的上限期权价格的下限提前执行美式期权的合理性期权价格曲线的形状看涨期权与看跌期权之间的平价关系期权的内在价值期权的内在价值期权价格等于期权的内在价值加上时间价值。期权的内在价值(IntrinsicValue)是指多方行使期权时可以获得的收益的现值。欧式看涨期权的内在价值为(ST-X)的现值。无收益资产欧式看涨期权的内在价值等于S-Xe-r(T-t),而有收益资产欧式看涨期权的内在价值等于
2、S-D-Xe-r(T-t)。无收益资产美式看涨期权价格等于欧式看涨期权价格,其内在价值也就等于S-Xe-r(T-t)。有收益资产美式看涨期权的内在价值也等于S-D-Xe-r(T-t)。无收益资产欧式看跌期权的内在价值为Xe-r(T-t)-S,有收益资产欧式看跌期权的内在价值为Xe-r(T-t)+D-S。无收益资产美式期权的内在价值等于X-S,有收益资产美式期权的内在价值等于X+D-S。当标的资产市价低于协议价格时,期权多方是不会行使期权的,因此期权的内在价值应大于等于0。期权的内在价值期权的内在价值期权的时间价值(TimeValue)是指在期权有效期内标的资产价格波动为期权持有者带来收益的可能
3、性所隐含的价值。显然,标的资产价格的波动率越高,期权的时间价值就越大。此外,期权的时间价值还受期权内在价值的影响。以无收益资产看涨期权为例,当S=Xe-r(T-t)时,期权的时间价值最大。当S-Xe-r(T-t)的绝对值增大时,期权的时间价值是递减的,如图13.1所示。期权的时间价值期权的时间价值期权的时间价值期权的时间价值标的资产的市场价格与期权的协议价格期权的有效期标的资产价格的波动率无风险利率标的资产的收益期权价格的影响因素期权价格的影响因素看涨期权价格的上限在任何情况下,期权的价值都不会超过标的资产的价格。因此,对于美式和欧式看涨期权来说,标的资产价格都是看涨期权价格的上限:其中,c代
4、表欧式看涨期权价格,C代表美式看涨期权价格,S代表标的资产价格。cSCS和期权价格的上限期权价格的上限看跌期权价格的上限美式看跌期权多头执行期权的最高价值为协议价格X,因此,美式看跌期权价格(P)的上限为X:由于欧式看跌期权只能在到期日(T时刻)执行,在T时刻,其最高价值为X,因此,欧式看跌期权价格(p)不能超过X的现值:其中,r代表T时刻到期的无风险利率,t代表现在时刻。PX()r T tpXe期权价格的上限期权价格的上限无收益资产欧式看涨期权价格的下限为推导出期权价格下限,考虑如下两个组合组合A:一份欧式看涨期权加上金额为的现金;组合B:一单位标的资产。T时刻:组合A的价值为:而组合B的价
5、值为ST。max(,)TSX()r TtXe期权价格的下限期权价格的下限由于,因此,在t时刻组合A的价值也应大于等于组合B,即:c+Xe-r(T-t)S所以cS-Xe-r(T-t)由于期权的价值一定为正,因此无收益资产欧式看涨期权价格下限为()max,0r T tcSXemax(,)TTSXS期权价格的下限期权价格的下限有收益资产欧式看涨期权价格的下限只要将上述组合A的现金改为+D,并经过类似的推导,就可得出有收益资产欧式看涨期权价格的下限为:()max,0r T tcSDXe()r T tXe期权价格的下限期权价格的下限无收益资产欧式看跌期权价格的下限考虑以下两种组合:组合C:一份欧式看跌期
6、权加一单位标的资产组合D:金额为的现金在T时刻,组合C的价值为:max(ST,X)组合D的现金以无风险利率投资,则在T时刻组合D的价值为X。由于组合C的价值在T时刻大于等于组合D,因此组合C的价值在t时刻也应大于等于组合D,即:()()r T tr T tpSXepXeS()r T tXe期权价格的下限期权价格的下限由于期权价值一定为正,因此无收益资产欧式看跌期权价格下限为:()max,0r T tpXeS期权价格的下限期权价格的下限有收益资产欧式看跌期权价格的下限只要将上述组合D的现金改为+D,就可得到有收益资产欧式看跌期权价格的下限为:从以上分析可以看出,欧式期权的下限实际上就是其内在价值
7、。()max,0r T tpDXeS()r TtXe期权价格的下限期权价格的下限提前执行无收益资产美式期权的合理性看涨期权由于现金会产生收益,而提前执行看涨期权得到的标的资产无收益,再加上美式期权的时间价值总是为正的,因此可以直观地判断提前执行是不明智的。为了精确地推导这个结论,考虑如下两个组合:组合A:一份美式看涨期权加上金额为的现金组合B:一单位标的资产T时刻组合A的价值为max(ST,X),而组合B的价值为ST,可见组合A在T时刻的价值一定大于等于组合B。即如果不提前执行,组合A的价值一定大于等于组合B。()r T tXe提前执行美式期权的合理性提前执行美式期权的合理性若在时刻提前执行,
8、则此时组合A的价值为:,而组合B的价值为。由于因此即:若提前执行美式期权,组合A的价值将小于组合B。比较两种情况可得:提前执行无收益资产美式看涨期权是不明智的。因此,同一种无收益资产的美式看涨期权和欧式看涨期权的价值是相同的,即:C=c可以得到无收益资产美式看涨期权价格的下限:()r TSXXeS,0Tr()r T tXeX()max,0r T tCSXe提前执行美式期权的合理性提前执行美式期权的合理性看跌期权为考察提前执行无收益资产美式看跌期权是否合理,考察如下两种组合:组合A:一份美式看跌期权加上一单位标的资产组合B:金额为的现金若不提前执行,则到T时刻,组合A的价值为max(X,ST),
9、组合B的价值为X,组合A的价值大于等于组合B。若在时刻提前执行,则组合A的价值为X,组合B的价值为Xe-(T-),因此组合A的价值也高于组合B。()r T tXe提前执行美式期权的合理性提前执行美式期权的合理性因此,是否提前执行无收益资产的美式看跌期权,主要取决于期权的实值额(X-S)、无风险利率水平等因素。一般来说,只有当S相对于X来说较低,或者r较高时,提前执行无收益资产美式看跌期权才可能是有利的。由于美式期权可提前执行,因此其下限为:PXS提前执行美式期权的合理性提前执行美式期权的合理性提前执行有收益资产美式期权的合理性看涨期权由于在无收益的情况下,不应提前执行美式看涨期权,据此可知:在
10、有收益情况下,只有在除权前的瞬时时刻提前执行美式看涨期权才有可能最优。先考察在最后一个除权日(tn)提前执行的条件。如果在tn时刻提前执行,则期权多方获得Sn-X的收益。如不提前执行,则标的资产价格将由于除权降到Sn-Dn。在tn时刻期权的价值(Cn)()max,0nr T tnnnnCcSDXe提前执行美式期权的合理性提前执行美式期权的合理性因此,如果即:则在tn提前执行是不明智的。相反,如果,则在tn提前执行有可能是合理的。实际上,只有当tn时刻标的资产价格足够大时,提前执行美式看涨期权才是合理的。同样,在ti时刻不能提前执行有收益资产的美式看涨期权条件是:由于存在提前执行更有利的可能性,
11、有收益资产的美式看涨期权价值大于等于欧式看涨期权,其下限为:()nr T tnnnSDXeSX()1nr T tnDXe()1nr T tnDXe1()1iir ttiDXe()max,0r T tCcSDXe提前执行美式期权的合理性提前执行美式期权的合理性看跌期权由于提前执行有收益资产的美式期权意味着自己放弃收益权,因此收益使美式看跌期权提前执行的可能性变小,但还不能排除提前执行的可能性。通过同样的分析,可以得出美式看跌期权不能提前执行的条件是:由于美式看跌期权有提前执行的可能性,因此其下限为:1()()11iinr ttir T tnDXeDXemax(,0)PDXS提前执行美式期权的合理
12、性提前执行美式期权的合理性无收益资产看涨期权价格曲线如下图所示。有收益资产看涨期权价格曲线与上图类似,只是把Xe-r(T-t)换成Xe-r(T-t)+D即可。期权价格曲线的形状期权价格曲线的形状无收益资产欧式看跌期权价格曲线如下图所示有收益资产期权价格曲线与上图相似,只是把换为即可。()r T tXe()r T tDXe期权价格曲线的形状期权价格曲线的形状无收益资产美式看跌期权价格曲线对有收益美式看跌期权价格曲线,只是把X换成D+X。期权价格曲线的形状期权价格曲线的形状无收益资产欧式看涨期权与看跌期权之间的平价关系考虑如下两个组合:组合A:一份欧式看涨期权加上金额为的现金组合B:一份有效期和协
13、议价格与看涨期权相同的欧式看跌期权加上一单位标的资产在期权到期时,两个组合的价值均为max(ST,X)。由于欧式期权不能提前执行,因此两组合在时刻t必须具有相等的价值,即:这就是无收益资产欧式看涨期权与看跌期权之间的平价关系。它表明欧式看涨期权的价值可根据相同协议价格和到期日的欧式看跌期权的价值推导出来,反之亦然。如果上式不成立,则存在无风险套利机会。套利活动将最终促使上式成立。()r T tXe()r T tcXepS看涨期权与看跌期权之间的平价关系看涨期权与看跌期权之间的平价关系有收益资产欧式看涨期权与看跌期权之间的平价关系在标的资产有收益的情况下,只要把前面组合A中的现金改为+D,就可推
14、导有收益资产欧式看涨期权和看跌期权的平价关系:()r T tcDXepS()r T tXe看涨期权与看跌期权之间的平价关系看涨期权与看跌期权之间的平价关系无收益资产美式看涨期权与看跌期权的平价关系由于Pp,可得:对于无收益资产看涨期权来说,由于c=C,因此:为了推出C和P更严密的关系,考虑以下两个组合:组合A:一份欧式看涨期权加上金额为X的现金组合B:一份美式看跌期权加上一单位标的资产如果美式期权没有提前执行,则在T时刻组合B的价值为max(ST,X),而此时组合A的价值为。因此组合A的价值大于组合B。如果美式期权在时刻提前执行,则在时刻,组合B的价值为X,而此时组合A的价值大于等于X。因此组
15、合A的价值也大于组合B。()r T tPcXeS()r T tPCXeS()r T tCPSXe看涨期权与看跌期权之间的平价关系看涨期权与看跌期权之间的平价关系也就是说,无论美式组合是否提前执行,组合A的价值都高于组合B,因此在t时刻,组合A的价值也应高于组合B,即:C+XP+S由于c=C,因此,C+XP+SC-PS-X我们可得:由于美式期权可能提前执行,因此不能得到美式看涨期权和看跌期权的精确平价关系,但可以得出结论:无收益美式期权必须符合上述不等式。()r T tSXCPSXe看涨期权与看跌期权之间的平价关系看涨期权与看跌期权之间的平价关系有收益资产美式看涨期权与看跌期权平价关系只要把组合
16、A的现金改为D+X,就可得到有收益资产美式期权必须遵守的不等式:S-D-XC-PS-D-Xe-r(T-t)看涨期权与看跌期权之间的平价关系看涨期权与看跌期权之间的平价关系第二节第二节 期权定价的理论基础期权定价的理论基础弱式效率市场假说与马尔可夫过程标准布朗运动普通布朗运动证券价格的变化过程伊藤过程和伊藤引理证券价格自然对数变化过程弱式效率市场假说与马尔可夫过程弱式效率市场假说与马尔可夫过程1965年,法玛(EFFama)提出了效率市场假说,该假说认为投资者都力图利用可获得的信息获得更高的报酬;证券价格对新的市场信息的反应是迅速而准确的,证券价格能完全反映全部信息;市场竞争使证券价格从一个均衡
展开阅读全文