书签 分享 收藏 举报 版权申诉 / 70
上传文档赚钱

类型七年级数学下册第七章平面直角坐标系复习课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2270497
  • 上传时间:2022-03-28
  • 格式:PPT
  • 页数:70
  • 大小:3.88MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《七年级数学下册第七章平面直角坐标系复习课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    七年 级数 下册 第七 平面 直角 坐标系 复习 课件 下载 _其它资料_数学_初中
    资源描述:

    1、 一、复习目的:一、复习目的:1、理解平面直角坐标系的意义,熟练掌握各、理解平面直角坐标系的意义,熟练掌握各象限内点的坐标特征。掌握一些特殊点的象限内点的坐标特征。掌握一些特殊点的坐标求法。坐标求法。 2.能建立适当的平面直角坐标系描述物体的能建立适当的平面直角坐标系描述物体的位置在同一直角坐标系中,感受图形变位置在同一直角坐标系中,感受图形变换后点的坐标的变化。换后点的坐标的变化。3.在平面直角坐标系中,能用坐标表示平移在平面直角坐标系中,能用坐标表示平移变换。变换。平面直角坐标系平面直角坐标系(一)、回顾本章知识结构:(一)、回顾本章知识结构:概念概念及有及有关知关知识识坐标坐标方法方法的

    2、应的应用用有序数对(有序数对(a,b)坐标系画法(坐标、坐标系画法(坐标、x轴和轴和y轴、象限)轴、象限)平面上的点平面上的点点的坐标点的坐标表示地理位置(选、建、标、写)表示地理位置(选、建、标、写)表示平移(点的平移、图形的平移)表示平移(点的平移、图形的平移)一一对应一一对应五、复习内容与过程:五、复习内容与过程:(二)、本章知识要点分类及其运用:(二)、本章知识要点分类及其运用: 1. 平面直角坐标系的意义及坐标平面的构成平面直角坐标系的意义及坐标平面的构成: (1)平面内两条互相)平面内两条互相_并且原点并且原点_的的_,组成,组成平面直角坐标系。其中,水平的数轴称为平面直角坐标系。

    3、其中,水平的数轴称为_或或_,习惯上取习惯上取_为正方向;竖直的数轴称为为正方向;竖直的数轴称为_或或_,取,取_方向为正方向;两坐标轴的交点叫做平面方向为正方向;两坐标轴的交点叫做平面直角坐标系的直角坐标系的_。直角坐标系所在的。直角坐标系所在的_叫做坐标平叫做坐标平面。面。(2)建立了平面直角坐标系以后,坐建立了平面直角坐标系以后,坐标平面就被标平面就被 分成了分成了 、四个部分,如图所示,四个部分,如图所示,分别叫做分别叫做_、_、_、_。注意注意 的点不属于任何象限。的点不属于任何象限。垂直垂直重合重合数轴数轴x轴轴横轴横轴向右向右y轴轴纵轴纵轴 向上向上原点原点平面平面两条坐标轴两条

    4、坐标轴第一象限第一象限第二象限第二象限第三象限第三象限第四象限第四象限坐标轴上坐标轴上xO-4 -3 -2 -1 1 2 3 4-3-2-11432-4y平面直角坐标系两条数轴两条数轴互相垂直互相垂直原点重合原点重合研究对象:研究对象:点的坐标点的坐标 有了平面直角坐标系,平面内的点就可以用一对有了平面直角坐标系,平面内的点就可以用一对_来表示。来表示。 坐标平面内的任意一点坐标平面内的任意一点M,M,都有唯一的都有唯一的 一对有序一对有序数对数对(x,y)(x,y)与它对应与它对应; ;任意一对有序数对任意一对有序数对(x,y),(x,y),在坐标在坐标平面内都有唯一的一个点平面内都有唯一的

    5、一个点M M与它对应。与它对应。2、坐标平面内的点与有序数对是一一对应关系:、坐标平面内的点与有序数对是一一对应关系: 有序数对有序数对xO123-1-2-312-1-2-3yA找找A A点的坐标?点的坐标?记作记作A( A( 2 2,1 1 ) )找点找点B( B( 3 3,-2 )-2 )表表示的点?示的点?B B方法:方法:先在先在x x轴和轴和y y轴上轴上分别找到表示横坐标与分别找到表示横坐标与纵坐标的点,然后过这纵坐标的点,然后过这两点分别作两点分别作x x轴与轴与y y轴的轴的垂线,两条垂线的交点垂线,两条垂线的交点就是该坐标对应的点。就是该坐标对应的点。方法:方法:分别过已知点

    6、分别过已知点向向x轴与轴与y轴作垂线,轴作垂线,垂足在数轴上对应的垂足在数轴上对应的数就是这个点的横坐数就是这个点的横坐标与纵坐标。标与纵坐标。3、坐标平面内,一般位置的点的的坐标的符号特征:坐标平面内,一般位置的点的的坐标的符号特征:(请用请用“”、“”、“0”分别填写分别填写)点的位置点的位置点的横坐标点的横坐标符号符号点的纵坐点的纵坐标符号标符号在第一象限在第一象限 在第二象限在第二象限 在第三象限在第三象限 在第四象限在第四象限 在在x轴的轴的正半轴上正半轴上 在在x轴的轴的负半轴上负半轴上 在在y轴的轴的正半轴上正半轴上 在在y轴的轴的负半轴上负半轴上 在原点在原点 (1)点的坐标是

    7、(,),则点在第)点的坐标是(,),则点在第 象限;象限;四四一或三一或三(3)若点()若点(x,y)的坐标满足)的坐标满足 xy,且在,且在x轴上轴上方,则点在第方,则点在第 象限;象限;二二巩固练习巩固练习1:由坐标找象限。:由坐标找象限。温馨提示:温馨提示:判断点的位置,关键抓住象限判断点的位置,关键抓住象限内点的内点的 坐标的符号特征坐标的符号特征.(2)若点()若点(x,y)的坐标满足)的坐标满足xy,则点在第则点在第 象限;象限;(4)若点)若点A的坐标为的坐标为(a2+1, -2b2),则点则点A在第在第_象限象限.四四巩固练习巩固练习2:坐标轴上点的坐标:坐标轴上点的坐标(1)

    8、点)点P(m+2,m-1)在在x轴上轴上,则点则点P的坐标是的坐标是 .( 3, 0 )(2)点)点P(m+2,m-1)在在y轴上轴上,则点则点P的坐标是的坐标是 .( 0, -3 )(3)点)点P(x,y)满足满足 xy=0, 则点则点P在在 .x 轴上轴上 或或 y 轴上轴上注意: 1. x轴轴上的点的上的点的纵纵坐标为坐标为0,表示为,表示为(x,0), 2. y轴轴上的点的上的点的横横坐标为坐标为0, 表示为表示为(0,y)。)。原点(原点(0 0,0 0)既在既在x x轴上,又在轴上,又在y y轴上。轴上。01-11-1xy特殊点的坐标特殊点的坐标(x,),)(,(,y)在平面直角坐

    9、标系内描在平面直角坐标系内描出出(-2,2),(0,2),(2,2),(4,2),依次连接各点依次连接各点,从中你发从中你发现了什么现了什么?平行于平行于x轴轴的直线的直线上的各点的上的各点的纵坐纵坐标相同标相同,横坐标不横坐标不同同.平行于平行于y轴轴的直线上的直线上的各点的的各点的横坐标相横坐标相同同,纵坐标不同纵坐标不同.在平面直角坐标系在平面直角坐标系内描出内描出(-2,3),(-2,2),(-2,0),(-2,-2),依次连接各点依次连接各点,从中从中你发现了什么你发现了什么?012345-4-3-2-131425-2-4-1-3xyABCD象限角平分线上的点的坐标特征象限角平分线上

    10、的点的坐标特征已知p(x,y),填表:横,纵坐标第一三象限角平分线上第二四象限角平分线上x = yx = - y(m,-m)(m,m)X0y0 x0Y0X0 x0y0横坐标横坐标相同相同纵坐标纵坐标相同相同(0,0)(0,y)(x,0)二四象二四象限限一三一三象限象限第四第四象限象限第三第三象限象限第二第二象限象限第一第一象限象限平行于平行于y轴轴平行于平行于x轴轴原点原点y轴轴x轴轴象限角平分象限角平分线上的点线上的点点点P(x,y)在各象)在各象限的坐标特点限的坐标特点连线平行于坐连线平行于坐标轴的点标轴的点坐标轴上点坐标轴上点P(x,y)特殊位置点的特殊坐标:特殊位置点的特殊坐标: (1

    11、). 若点若点P在第一、三象限角的平分线上在第一、三象限角的平分线上,则则P( m, m ). (2). 若点若点P在第二、四象限角的平分线上则在第二、四象限角的平分线上则P( m, -m ).六:象限角平分线上的点六:象限角平分线上的点3.已知点已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,)在两坐标轴夹角的平分线上,试求试求M的坐标。的坐标。2.已知点已知点A(2a+1,2+a)在第二象限的平分线上,)在第二象限的平分线上,试求试求A的坐标。的坐标。1.已知点已知点A(2,y ),点点B(x ,5 ),点点A、B在一、三在一、三象限的角平分线上象限的角平分线上, 则则x =_,y

    12、=_;5 52 2(1,1)变式变式:到两坐标轴的距离相等:到两坐标轴的距离相等(4,4)或()或(2,2)(4,4)或()或(2,2) (1)点点(a, b )关于关于X轴的对称点是(轴的对称点是( )a, -b- a, b -a, -b(2)点点(a, b )关于关于Y 轴的对称点是(轴的对称点是( )(3)点点(a, b )关于原点的对称点是(关于原点的对称点是( )1.1.已知已知A A、B B关于关于x x轴对称,轴对称,A A点的坐标为(点的坐标为(3 3,2 2),则),则B B的坐标的坐标为为 。(3 3,-2-2)2.若点若点A(m,-2),B(1,n)关于关于y轴对称轴对称

    13、,m= ,n= .-3.已知点已知点A(3a-1,1+a)在第一象限的平分线上,试)在第一象限的平分线上,试求求A关于原点的对称点的坐标。关于原点的对称点的坐标。关于谁谁不变关于谁谁不变 另一个互为相反数另一个互为相反数关于原点关于原点 横纵坐标都互为相反数横纵坐标都互为相反数(1). 已知点已知点A(m,-2),点),点B(3,m-1),且直),且直线线ABx轴,则轴,则m的值为的值为 。-(2). 已知点已知点A(m,-2)、点)、点B(3,m-1),且直),且直线线ABy轴,则轴,则m的值为的值为 。301-11-1xyP(a,b)A(a,-b)B(-a,b)C(-a,-b)对称点的坐标

    14、对称点的坐标(1)关于)关于x轴对称的点:轴对称的点:横坐标横坐标 ,纵坐标纵坐标 。 (2)关于)关于y轴对称的点:轴对称的点:纵坐标纵坐标 、横坐标横坐标 。 (3)关于原点对称的点)关于原点对称的点 : 横坐标横坐标 , 纵坐标纵坐标 。 4. 特殊位置的点的坐标特点:特殊位置的点的坐标特点:相同相同互为相反数互为相反数相同相同互为相反数互为相反数互为相反数互为相反数互为相反数互为相反数 (1). 点点( x, y )到到 x 轴的距离是轴的距离是y (2). 点点( x, y )到到 y 轴的距离是轴的距离是x(1).若点的坐标是若点的坐标是(- 3, 5),则它到,则它到x轴的距离轴

    15、的距离是是 ,到,到y轴的距离是轴的距离是 (2)点到点到x轴、轴、y轴的距离分别是轴的距离分别是,,则点的,则点的坐标可能为坐标可能为 . (1,2)、 (-1,2)、(-1,-2) 、(1,-2).巩固练习:巩固练习:6 6、利用平面直角坐标系绘制某一区域的各点分布情况的、利用平面直角坐标系绘制某一区域的各点分布情况的平面图平面图包括以下过程包括以下过程: : (1) (1)建立建立适当适当的坐标系的坐标系, ,即选择一个即选择一个 为为原点原点, ,确定确定x x轴、轴、y y轴的轴的 ; ; ( (注重寻找最佳位置注重寻找最佳位置) ) (2) (2)根据具体问题确定根据具体问题确定

    16、,选择适当的位置标,选择适当的位置标出比例尺和在数轴上标出单位长度出比例尺和在数轴上标出单位长度; ; (3) (3)在坐标平面内画出各点在坐标平面内画出各点, ,写出各点的写出各点的 和各个和各个地点的地点的 。注意:坐标系的位置不同(即原点不同)或单位注意:坐标系的位置不同(即原点不同)或单位长度不同,各点在坐标系中的坐标也不同。长度不同,各点在坐标系中的坐标也不同。适当的参照点适当的参照点正方向正方向单位长度单位长度坐标坐标名称名称例例2下图是某地区的简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地点的坐标.商场商场小卖部小卖部学校学校医院医院宾馆宾馆火

    17、车站火车站文化宫文化宫体育馆体育馆商场商场小卖部小卖部学校学校医院医院宾馆宾馆火车站火车站文化宫文化宫体育馆体育馆yx解解:以火车站为原点,东西向为横轴,建立如图所示的坐标系.体育馆(-400,400)文化宫(-300,200)宾馆( 300,300)商场( 600,400)医院(-200,-200)小卖部(300,-300)学校(100,-400)典型分析,强调方法典型分析,强调方法.北哲 商哲 商小学小学崇和门崇和门临海临海中学中学中心小学中心小学台 州台 州医院医院xyO你能确定图中的各个位置吗?你能确定图中的各个位置吗?想一想!想一想!( (或或(x,y-b)(x,y-b)( (或向下

    18、或向下) )返回返回可以简单地理解为可以简单地理解为: 左、右平移左、右平移_坐标不变坐标不变, _坐标变坐标变,变化变化规律是规律是_减减_加加, 上下平移上下平移_坐标不变坐标不变, _坐标变坐标变, 变化规律是变化规律是_减减 _加。例如加。例如:当当P(x ,y)向右平移向右平移a个单位长度个单位长度,再向上平移再向上平移b个单位长度后坐标为个单位长度后坐标为 。(三)、(三)、看谁反应快?看谁反应快?1 、 在平面直角坐标系中,有在平面直角坐标系中,有一点一点P(-,),若将,),若将P:(1)向左平移向左平移2个单位长度,所得点的坐标为个单位长度,所得点的坐标为_;(2)向右平移向

    19、右平移3个单位长度,所得点的坐标为个单位长度,所得点的坐标为_;(3)向下平移向下平移4个单位长度,所得点的坐标为个单位长度,所得点的坐标为_;(4)先向右平移先向右平移5个单位长度,再向上平移个单位长度,再向上平移3个单位长个单位长度,所得坐标为度,所得坐标为_。比一比,看谁反应快?比一比,看谁反应快?2、如果、如果A,B的坐标分别为的坐标分别为A(-4,5),),B(-4,2),将点将点A向向_平移平移_个单位长度个单位长度得到点得到点B;将点;将点B向向_平移平移_个单位长度个单位长度得到点得到点A 。3、如果、如果P、Q的坐标分别为的坐标分别为P(-3,-5),),Q(2,-5),),

    20、,将点将点P向向_平移平移_个单位个单位长度得到点长度得到点Q;将点;将点Q向向_平移平移_个单位个单位长度得到点长度得到点P。4、点点P(x,y)在第四象限,且)在第四象限,且|x|=3,|y|=2,则,则P点的坐标是点的坐标是。5、点点P(a-1,a2-9)在)在x轴负半轴上,则轴负半轴上,则P点坐标点坐标是是。6、点(,)到点(,)到x轴的距离为轴的距离为;点;点(-,)到,)到y轴的距离为轴的距离为;点;点C到到x轴的轴的距离为距离为1,到,到y轴的距离为轴的距离为3,且在第三象限,则,且在第三象限,则C点坐标是点坐标是。7、直角坐标系中,在直角坐标系中,在y轴上有一点轴上有一点p ,

    21、且,且 OP=5,则,则P的坐标为的坐标为 (3 ,-2)(-4 ,0)3个单位个单位4个单位个单位(-3 ,-1)(0 ,5)或或(0 ,-5)比一比,看谁反应快?比一比,看谁反应快?9、如图所示的象棋盘上,若、如图所示的象棋盘上,若帅帅位于点位于点(1,2)上,)上,相相位于点(位于点(3,2)上,则上,则炮炮位于点()。位于点()。 A(1,1) B(1,2) C(2,1) D(2,2) 图3 相 帅 炮C比一比,看谁反应快?比一比,看谁反应快?1010、已知点、已知点A A(6 6,2 2),),B B(2 2,4 4)。)。求求AOBAOB的面积(的面积(OO为坐标原点)为坐标原点)

    22、CDxyO2424-2-4-2-4AB6议一议!议一议!12、三角形、三角形ABC三个顶点三个顶点A、B、C的坐标分别的坐标分别为为A(2,-1),),B(1,-3),),C(4,-3.5)。)。1 2 3 4 5 6-67654231-1-2-3-4-5-6-7-5 -4 -3 -2 -1yx0(1)把三角形)把三角形A1B1C1向向右平移右平移4个单位,再向下个单位,再向下平移平移3个单位,恰好得到个单位,恰好得到三角形三角形ABC,试写出三,试写出三角形角形A1B1C1三个顶点的三个顶点的坐标坐标;111:( 2,2)( 3,0)(0.0.5)ABC解 点点点ACB1A1B1C1 2 3

    23、 4 5 6-67654231-1-2-3-4-5-6-7-5 -4 -3 -2 -1yx0(2)求出三角形)求出三角形 A1B1C1的面积。的面积。1A1B1CDE分析:可把它补成一个梯形减去两个三角形。11111111111:1(2.52)32111222.5226.7512.53.25A B CDEC BA B DA C EDEC BSSSS 梯形解补成梯形ABCDEF8.求四边形求四边形ABCD的面积的面积9.求三角形求三角形ABC的面积的面积ABO作业:作业:练习练习:教科书教科书 复习复习题题7 第第1、2、3、4、5题题什么是数轴?什么是数轴? 在直线上规定了原点、正方向、单位长

    24、度在直线上规定了原点、正方向、单位长度就构成了数轴。就构成了数轴。单位长度单位长度01234-3 -2 -1原点原点数轴上的点与实数间的关系是什么?一一对应关系确定平面内点的位置确定平面内点的位置互相垂直互相垂直有公共原点有公共原点建立平面直角坐标系建立平面直角坐标系读点与描点读点与描点象限与象限内点的符号象限与象限内点的符号特殊位置点的坐标特殊位置点的坐标有关有关x、y轴对称和关于原点对称轴对称和关于原点对称坐标系的应用坐标系的应用用坐标表用坐标表示位置示位置用坐标表示用坐标表示平移平移画两条数轴画两条数轴31425-2-4-1-3012345-4 -3 -2 -1x横轴横轴y纵轴纵轴原点原

    25、点第第一一象限象限第第四象限象限第第三三象限象限第第二二象限象限想一想想一想 :(1)两条坐标轴把一个平面两条坐标轴把一个平面分成几部份分成几部份,分别叫什么分别叫什么? 坐标轴上的坐标轴上的点属于哪个象限点属于哪个象限? 在平面内有公共原点而且互相垂直的两条数轴,就构成了平面直角坐标系。C点的坐标的确定,点的坐标的确定,平面上点的坐标就是对有序数对平面上点的坐标就是对有序数对坐标轴上点的坐标的特点:坐标轴上点的坐标的特点:各个象限的坐标的特点各个象限的坐标的特点二平面上点的坐标与象限二平面上点的坐标与象限321-1-2-3A第一象限第一象限第二象限第二象限第三象限第三象限第四象限第四象限(+

    26、,+)(,(,+)(,)(,)(+,),)(,)(,)xyB(, )(,(,0)(0,-)BA坐标轴上的点不属于任何象限坐标轴上的点不属于任何象限 (0,),)31425-2-4-1-3012345-4-3-2-1x横轴横轴y纵轴纵轴原点原点第第一一象限象限第第四象限象限第第三三象限象限第第二二象限象限X轴上的点纵坐标为轴上的点纵坐标为0,即(,即(x,0)Y轴上的点横坐标为轴上的点横坐标为0,即(,即(0,y)(,)(,)(,)(,)(,)(,)(,)(,)(0,0) 坐标平面内的任意一点坐标平面内的任意一点P的坐的坐标是指什么标是指什么? 你是怎样理解你是怎样理解“有序有序”二字二字? X

    27、Y0.Pab(a,b)横坐标横坐标纵坐标纵坐标坐标是一对坐标是一对有序实数有序实数31425-2-4-1-3012345-4-3-2-1xyMNP有序实数对(有序实数对(2,3)对应对应坐标平面内点坐标平面内点 P练习练习 在直角坐标系内画出在直角坐标系内画出下列各点:下列各点:A(3,2)、)、 B(0,2)、)、C(3,2)、)、D(3,0)ABCD 对于坐标平面内的任意对于坐标平面内的任意一点一点,都可以找到一个都可以找到一个有序有序实数对(实数对(x,y)和它对应和它对应。 这个有序实数对(这个有序实数对(x,y)就就是这个点的坐标。是这个点的坐标。A31425-2-4-1-30123

    28、45-4-3-2-1x横轴横轴y纵轴纵轴A的横坐标的横坐标为为4A的纵坐标的纵坐标为为2有序数对有序数对(4, 2)就叫做就叫做A的坐标的坐标横坐轴横坐轴写在前面写在前面B(-4,1)记作:(记作:(4,2)M(3,2)31425-2-4-1-3O12345-4-3-2-1x横轴横轴y纵轴纵轴N(2,3)SR(1,-1)(-1,1)pQA(-3,-3)点点P 坐标坐标 (1 , 0)点点Q坐标坐标 (0 , -1)原点原点O坐标坐标(0,0)123456712345yO11524632345x例:找有序实数对(例:找有序实数对(-2,3)在坐标平面上的对应点)在坐标平面上的对应点P。.P练习:

    29、在直角坐标系内画出下列各点:练习:在直角坐标系内画出下列各点:A(2,3),), C(-2,-3),),.AC1.点的坐标是(,),则点在第象限点的坐标是(,),则点在第象限若点(若点(x,y)的坐标满足)的坐标满足xy,则点,则点在第象限;在第象限;若点(若点(x,y)的坐标满足)的坐标满足xy,且在,且在x轴上方,则轴上方,则点在第象限点在第象限若点的坐标是(,),则它到若点的坐标是(,),则它到x轴的距离是轴的距离是,到,到y轴的距离是轴的距离是若点在若点在x轴上方,轴上方,y轴右侧,并且到轴右侧,并且到x轴、轴、y轴距离轴距离分别是、个单位长度,则点的坐标是分别是、个单位长度,则点的坐

    30、标是点到点到x轴、轴、y轴的距离分别是、,则点的坐轴的距离分别是、,则点的坐标可能为标可能为四四一或三一或三二二(4,2)(1,2)、(1,-2)、(-1,2)、(-1,-2)想一想:下列各点分别在坐标平面的什么位置上?想一想:下列各点分别在坐标平面的什么位置上? A(3,2) B(0,2) C(3,2) D(3,0) E(1.5,3.5) F(2,3)第一象限第一象限第三象限第三象限第二象限第二象限第四象限第四象限y轴上轴上x轴上轴上点P(x,y)的坐标x,y,满足xy=0,则点P在 . 4.甲同学从A(1,0)出发,向东走2个单位,再向北走3个单位到达B( , ) 5.点A(x,y)在第二

    31、象限,满足 求A的坐标 . 3,4yx6.点A(x,y),且x+y0, 那么点A在第_象限0yx3.点A(1+m,2m+1)在x轴上,则m=_,此时A的坐标_练一练练一练01-11-1xy特殊点的坐标特殊点的坐标(x,),)(,(,y)在平面直角坐标系内描在平面直角坐标系内描出出(-2,2),(0,2),(2,2),(4,2),依次连接各点依次连接各点,从中你发从中你发现了什么现了什么?平行于平行于x轴轴的直线的直线上的各点的上的各点的纵坐纵坐标相同标相同,横坐标不横坐标不同同.平行于平行于y轴轴的直线上的直线上的各点的的各点的横坐标相横坐标相同同,纵坐标不同纵坐标不同.在平面直角坐标系在平面

    32、直角坐标系内描出内描出(-2,3),(-2,2),(-2,0),(-2,-2),依次连接各点依次连接各点,从中从中你发现了什么你发现了什么?012345-4-3-2-131425-2-4-1-3xyABCD象限角平分线上的点的坐标特征象限角平分线上的点的坐标特征已知p(x,y),填表:横,纵坐标第一三象限角平分线上第二四象限角平分线上x = yx = - y(m,-m)(m,m)x0y0 x0y0 x0y0 x0y0横坐标横坐标相同相同纵坐标纵坐标相同相同(0,0)(0,y)(x,0)二四象二四象限限一三一三象限象限第四第四象限象限第三第三象限象限第二第二象限象限第一第一象限象限平行于平行于y

    33、轴轴平行于平行于x轴轴原点原点y轴轴x轴轴象限角平分象限角平分线上的点线上的点点点P(x,y)在各象)在各象限的坐标特点限的坐标特点连线平行于坐连线平行于坐标轴的点标轴的点坐标轴上点坐标轴上点P(x,y)特殊位置点的特殊坐标:特殊位置点的特殊坐标:2.(1)2.(1)点(点(-3-3,2 2)在第)在第_象限象限; ;二二(2)(2)点(点(1.51.5,-1-1)在第)在第_象限;象限;四四(3)(3)点(点( -3 -3 ,0 0)在)在_轴上;轴上;x(4)(4)若点(若点(-3-3, a + 5a + 5)在)在x x轴上,则轴上,则a=_.a=_.- 5(5)(5)点点 M M( -

    34、3-3,-4-4)到)到 x x轴的距离是轴的距离是_, 到到 y y轴的距离是轴的距离是_,_, 到到 原点的距离是原点的距离是_._.435六、会画出平面直角坐标系,描述物体的位置六、会画出平面直角坐标系,描述物体的位置例例: :长方形的长和宽分别是长方形的长和宽分别是6 6,4 4,建立适当的直角坐标系,并写,建立适当的直角坐标系,并写出各个顶点的坐标出各个顶点的坐标解:ABCDxy640以点以点B为坐标原点,分别以为坐标原点,分别以BC、BA所在直线为所在直线为x轴轴y轴,建立直角坐标系坐标分别为轴,建立直角坐标系坐标分别为A(0,4),B(0,0),C(6 , 0),D(6,4)解:

    35、ABCDxy03-32-2以长方形的中心为坐标原点,平行于BC、BA的直线为x轴、y轴,建立直角坐标系坐标分别为A(-3,2),B(-3,-2),C(3,-2),D(3,2)(七)(七)两个图案两个图案对应点的坐标对应点的坐标作如下变化,作如下变化,所所得图案与原图案得图案与原图案相比有什么变化?相比有什么变化?(1)对应点)对应点(x , y)变为变为(x+5,y)(2)对应点)对应点(x , y)变为变为(x-6,y)(3)对应点)对应点(x , y)变为变为(x,y+9)(4)对应点)对应点(x , y)变为变为(x,y-7)向右平移向右平移5个单位,形状不变,大小不变。个单位,形状不变

    36、,大小不变。向左平移向左平移6个单位,形状不变,大小不变。个单位,形状不变,大小不变。向上平移向上平移9个个单位,形状不变,大小不变。单位,形状不变,大小不变。向下平移向下平移7个个单位,形状不变,大小不变。单位,形状不变,大小不变。3.将A(-3,2)向右平移4个单位,再向上平移1个单位得到B的坐标( ).五点的平移五点的平移.与点坐标的变化与点坐标的变化.1.将A(-3,2)向左平移2个单位,得点的坐标为 .2.将A(-3,2)向下平移2个单位,得点的坐标为 .5.将A(x,y)通过平移得点的坐标为A/(x+3,y-2),则先A向 平移 个单位,再向 平移 个单位。 4.将点A(2,3)向

    37、_平移_个单位,再向_平移_个单位后与点B(-3,5)重合6.A(1,2),B(2,3),将线段AB平移得到CD,点A的对应点C坐标为 (0,4),则点D的坐标为 . 7 7、在直角坐标系中,点、在直角坐标系中,点P P(1 1,3 3)向下)向下平移平移4 4个单位长度后的坐标为(个单位长度后的坐标为( )8 8、若点、若点P P(x x,y y)的坐标满足)的坐标满足 xy=0,xy=0,则则点点P P在(在( )A.A.( 1 1 ,1 1) B.B.( 1 1,-1-1) C.C.( 1 1 ,0 0) D.D.( 3 3 ,1 1)A. A. 原点原点 B. x B. x 轴上轴上

    38、C. yC. y轴上轴上 D. xD. x轴上或轴上或y y轴上或原点轴上或原点B BD D3、已知点A(1+m,2m+1)在x轴上,则m= ,此时坐标为 。 4、已知点A(5,2)和点B(-3,b),且ABx轴,则b= 。1、点P(-2,-3)到x轴的距离为 ,到y轴的距离为 。2、点P(3x-3,2-x)在第四象限,则x的取值范围是 。0.5(0.5,0)232x2已知点A(6,2),B(2,4)。求AOB的面积(O为坐标原点)例例1 1CDxyO2424-2-4-2-4AB61.点点P(3,0)在在 .2.点点P(m+2,m-1)在在y轴上轴上,则点则点P的坐标的坐标是是 .3.点点P(

    39、x,y)满足满足xy=0,则点则点P在在 .4.已知已知:A(1,2),B(x,y),ABx轴轴,且且B到到y轴距轴距离为离为2,则点则点B的坐标是的坐标是 .5.点点A(-1,-3)关于关于x轴对称点的坐标是轴对称点的坐标是 .关关于原点对称的点坐标是于原点对称的点坐标是 .6.若点若点A(m,-2),B(1,n)关于原点对称关于原点对称,则则m= ,n= .、点、点A(-2,1)在第()在第( )象限)象限、已知、已知ab0,则点,则点A(a-b,b)在第()在第( )象限)象限、若、若P(a,b)在第四象限,则)在第四象限,则Q点(点(b,-a)在第)在第( )象限)象限、在平面直角坐标

    40、系中,点(、在平面直角坐标系中,点(-1,-2)在第()在第( )象)象限限、已知坐标平面内、已知坐标平面内A(m,n)在第四象限,那么)在第四象限,那么B(n,m)在第()在第( )象限)象限、已知、已知x轴上的点轴上的点P到到y轴的距离为轴的距离为3,则点,则点P的坐标为的坐标为( )、海上救护中心收到一艘遇难船只的求救信号后发、海上救护中心收到一艘遇难船只的求救信号后发现该船位于点现该船位于点A(5,-4),同时发现在点),同时发现在点B(5,2)和)和点点C(-1,-4)处各有一艘救护船,如果救护船行使的)处各有一艘救护船,如果救护船行使的速度相同,问救护中心应派哪条船前去救护可以在最

    41、短速度相同,问救护中心应派哪条船前去救护可以在最短时间内靠近遇难船只?时间内靠近遇难船只?xyO-4 -3 -2 -1 1 2 3 4-12341-2-3A(5,-4)B(5,2)C(-1,-4)3.点A在y轴上,距离原点4个单位.则A的坐标是 .4.点A在y轴的右侧,距离y轴4个单位,距离x轴3个单位,则A的坐标是 .三平面上点的到坐标轴上的距离三平面上点的到坐标轴上的距离2.点P(a,b)到x轴的距离是 ,到y轴的距离是 .1.点P(1,-4)到x轴的距离是 ,到y轴的距离是 .6,点P(a-2,2a+3)到两坐标轴的距离相等,则a= .5.点P在x轴的下方,距离x轴4个单位;y轴的左侧,

    42、距离y轴的距离3个单位,则P的坐标是P( )7.四边形四边形(-2,1),B(3,-1),C(2,4),D(-1,2)将四边形将四边形ABCD向右平移个单位,再向上平移个单位,向右平移个单位,再向上平移个单位,(1)求得到的另一个四边形各顶点的坐标求得到的另一个四边形各顶点的坐标(2).移动后的四边形的面积移动后的四边形的面积ABCDABCDEF8.求四边形求四边形ABCD的面积的面积9.求三角形求三角形ABC的面积的面积ABO1.矩形矩形ABCD的长为的长为4,宽为宽为3,建立适当的直建立适当的直角坐标系角坐标系,并写出各点的坐标并写出各点的坐标.31425-2-4-1-3012345-4-3-2-1ABCD31425-2-4-1-3012345-4-3-2-1xxyy六六.建立适当的直角坐标系解题建立适当的直角坐标系解题

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:七年级数学下册第七章平面直角坐标系复习课件.ppt
    链接地址:https://www.163wenku.com/p-2270497.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库