第四节-多元复合函数与隐函数的求导法则课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第四节-多元复合函数与隐函数的求导法则课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 多元 复合 函数 求导 法则 课件
- 资源描述:
-
1、复合函数的微分法和隐函数的微分法呢?复合函数的微分法和隐函数的微分法呢?这主要是对于没有具体给出式子的所谓抽象函数这主要是对于没有具体给出式子的所谓抽象函数如如),(22xyyxfz 它是由它是由),(vufz xyvyxu ,22及复合而成的复合而成的由于由于 f 没有具体给出没有具体给出时时在求在求yzxz , 一元复合函数的微分法则就无能为力了,为一元复合函数的微分法则就无能为力了,为此还要介绍多元复合函数的微分法和隐函数的此还要介绍多元复合函数的微分法和隐函数的微分法。微分法。一、链式法则一、链式法则定理如果函数定理如果函数)(tu 及及)(tv 都在点都在点t可可导,函数导,函数),
2、(vufz 在对应点在对应点),(vu具有连续偏具有连续偏导数,则复合函数导数,则复合函数)(),(ttfz 在对应点在对应点t可可导,且其导数可用下列公式计算:导,且其导数可用下列公式计算: dtdvvzdtduuzdtdz 证证,获得增量获得增量设设tt ),()(tttu 则则);()(tttv 由由于于函函数数),(vufz 在在点点),(vu有有连连续续偏偏导导数数,21vuvvzuuzz 当当0 u,0 v时,时,01 ,02 tvtutvvztuuztz 21 当当0 t时,时, 0 u,0 v,dtdutu ,dtdvtv .lim0dtdvvzdtduuztzdtdzt 上定
3、理的结论可推广到中间变量多于两个的情况上定理的结论可推广到中间变量多于两个的情况.如如dtdwwzdtdvvzdtduuzdtdz zuvwt以上公式中的导数以上公式中的导数 称为称为dtdz 上定理还可推广到中间变量不是一元函数上定理还可推广到中间变量不是一元函数而是多元函数的情况:而是多元函数的情况:).,(),(yxyxfz 如果如果),(yxu 及及),(yxv 都在点都在点),(yx具有对具有对x和和y的偏导数,且函数的偏导数,且函数),(vufz 在对应在对应点点),(vu具有连续偏导数,则复合函数具有连续偏导数,则复合函数),(),(yxyxfz 在对应点在对应点),(yx的两个
4、偏的两个偏导数存在,且可用下列公式计算导数存在,且可用下列公式计算 xvvzxuuzxz , yvvzyuuzyz .链式法则如图示链式法则如图示zuvxy xz uzxu vz,xv yz uzyu vz.yv 称为标准法则或称为标准法则或 法法则则22 这个公式的特征:这个公式的特征:函数函数),(),(yxvyxufz 有两个自变量有两个自变量 x 和和 y故法则中包含故法则中包含yzxz ,两个公式;两个公式;由于在复合过程中有两个中间变量由于在复合过程中有两个中间变量 u 和和 v故法则中每一个公式都是两项之和,这两故法则中每一个公式都是两项之和,这两项分别含有项分别含有 vzuz
5、,每一项的构成与一元复合函数的链导法则类似,每一项的构成与一元复合函数的链导法则类似,即即“函数对中间变量的导数乘以中间变量对函数对中间变量的导数乘以中间变量对自变量的导数自变量的导数”多元复合函数的求导法则简言之即:多元复合函数的求导法则简言之即:“分道相加,连线相乘分道相加,连线相乘” ” 类类似似地地再再推推广广,设设),(yxu 、),(yxv 、),(yxww 都都在在点点),(yx具具有有对对x和和y的的偏偏导导数数,复复合合函函数数),(),(),(yxwyxyxfz 在在对对应应点点),(yx的的两两个个偏偏导导数数存存在在,且且可可用用下下列列公公式式计计算算 xwwzxvv
6、zxuuzxz , ywwzyvvzyuuzyz . zwvuyx特殊地特殊地),(yxufz 其中其中),(yxu 即即,),(yxyxfz 令令, xv , yw , 1 xv, 0 xw, 0 yv. 1 yw,xfxuufxz .yfyuufyz 两者的区别两者的区别把把复复合合函函数数,),(yxyxfz 中中的的y看看作作不不变变而而对对x的的偏偏导导数数 把把),(yxufz 中中的的u及及y看看作作不不变变而而对对x的的偏偏导导数数区别类似区别类似注注 此公式可以推广到任意多个中间变量和任此公式可以推广到任意多个中间变量和任意多个自变量的情形意多个自变量的情形如如),(21mu
7、uufz ),(21niixxxuu 则则), 2 , 1( ,1njxuuzxzjimiij 从以上推广中我们可以得出:所有公式中从以上推广中我们可以得出:所有公式中两两乘积的项数等于中间变量的个数,而与自两两乘积的项数等于中间变量的个数,而与自变量的个数无关变量的个数无关(1,2,)im关于多元复合函数求偏导问题关于多元复合函数求偏导问题这是一项基本技能,要求熟练掌握,尤其是求二这是一项基本技能,要求熟练掌握,尤其是求二阶偏导数,既是重点又是难点。对求导公式不求阶偏导数,既是重点又是难点。对求导公式不求强记,而要切实做到彻底理解。注意以下几点将强记,而要切实做到彻底理解。注意以下几点将会有
8、助于领会和理解公式,在解题时自如地运用会有助于领会和理解公式,在解题时自如地运用公式公式用图示法表示出函数的复合关系用图示法表示出函数的复合关系函数对某个自变量的偏导数的结构函数对某个自变量的偏导数的结构(项数及项的构成)(项数及项的构成) 的结构是求抽象的复合函的结构是求抽象的复合函数的二阶偏导数的关键数的二阶偏导数的关键 ),(),(vufvufvu弄清弄清 ),(),(vufvufvu仍是复合函数仍是复合函数且复合结构与原来的且复合结构与原来的 f ( u , v ) 完全相同完全相同即仍是以即仍是以 u , v 为中间变量,以为中间变量,以 x , y 为自变量为自变量的复合函数的复合
9、函数因此求它们关于因此求它们关于 x , y 的偏导数时必须使链式法则的偏导数时必须使链式法则),(vufuzu uvxyxvfxufvufxxvfxufvufxvvvuvuvuuu ),(),(在具体计算中最容易出错的地方是对在具体计算中最容易出错的地方是对 ),( vufu再求偏导数这一步再求偏导数这一步 是与是与 f ( u , v ) 具具有相同结构的复合函数易被误认为仅是有相同结构的复合函数易被误认为仅是 u 的的函数,从而导致漏掉函数,从而导致漏掉),(vufu这这一一项项uvf原因就是不注意原因就是不注意 求抽象函数的偏导数时,一定要设中间变量求抽象函数的偏导数时,一定要设中间变
10、量注意引用这些公式的条件注意引用这些公式的条件外层函数可微(偏导数连续)外层函数可微(偏导数连续) 内层函数可导内层函数可导 vuuvff ,的合并问题的合并问题视题设条件视题设条件例例 1 1 设设vezusin ,而,而xyu ,yxv , 求求 xz 和和yz .解解 xz uzxu vzxv 1cossin veyveuu),cossin(vvyeu yz uzyu vzyv 1cossin vexveuu).cossin(vvxeu 例例 2 2 设设tuvzsin ,而而teu ,tvcos , 求求全全导导数数dtdz.解解tzdtdvvzdtduuzdtdz ttuvetcos
11、sin ttetettcossincos .cos)sin(costttet 例例3 设设),(),(),(),(),( ryyrxxyxvvyxuuvufw 均满足复合函数求偏导数的条件均满足复合函数求偏导数的条件 计算计算 wrw,(两重复合问题)(两重复合问题)解解由链式法则由链式法则wuvxyrrvvwruuwrw ryyurxxuru ryyvrxxvrv 故故)()(ryyvrxxvvwryyurxxuuwrw 同理可得同理可得)()( yyvxxvvwyyuxxuuww 例例 4 4 设设),(xyzzyxfw ,f具有二阶具有二阶 连续偏导数,求连续偏导数,求xw 和和zxw
12、2. . 解解令令, zyxu ;xyzv 记记,),(1uvuff ,),(212vuvuff 同理有同理有,2f ,11f .22f xwxvvfxuuf ;21fyzf zxw2)(21fyzfz ;221zfyzf yzf zf1zvvfzuuf 11;1211fxyf zf2zvvfzuuf 22;2221fxyf 于是于是 zxw21211fxyf 2f y )(2221fxyfyz .)(22221211f yf zxyfzxyf 二、全微分形式不变性二、全微分形式不变性 设函数设函数),(vufz 具有连续偏导数,则有全微分具有连续偏导数,则有全微分dvvzduuzdz ;当当
展开阅读全文