经典教材量纲分析与无量纲化课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《经典教材量纲分析与无量纲化课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 教材 量纲分析 量纲 课件
- 资源描述:
-
1、量纲齐次原则量纲齐次原则等式两端的量纲一致等式两端的量纲一致量纲分析量纲分析利用量纲齐次原则寻求物理量之间的关利用量纲齐次原则寻求物理量之间的关系系例:单摆运动例:单摆运动)1 (321glmt 321glmt lmgm求摆动周期求摆动周期 t 的表达式的表达式设物理量设物理量 t, m, l, g 之间有关系式之间有关系式 1, 2, 3 为待定系数,为待定系数, 为无量纲量为无量纲量 2/ 12/ 10321glt(1)的量纲表达式的量纲表达式glt2对比对比33212TLMT12003321对对 x,y,z的两组测量值的两组测量值x1,y1,z1 和和x2,y2,z2, p1 = f(
2、x1,y1,z1), p2 = f( x2, y2,z2 )2121pppp为什么假设这种形式为什么假设这种形式321glmt 设设p= f(x,y,z),(),(),(),(222111222111czbyaxfczbyaxfzyxfzyxfx,y,z的量纲单的量纲单位缩小位缩小a,b,c倍倍zyxzyxf),(p= f(x,y,z)的形式为的形式为),(),(22221111czbyaxfpczbyaxfp0002010010101004321)()()()(TMLTMLTMLTMLTMLyyyy000241243TMLTMLyyyyy201001010100TMLgTMLlTMLmTML
3、t单摆运动中单摆运动中 t, m, l, g 的一般表达式的一般表达式0),(glmtf020041243yyyyyglt12)/(gltTTyyyyy) 1, 1, 0, 2(),(4321基本解4321yyyyglmty1y4 为待定常数为待定常数, 为无量纲量为无量纲量0)(F设设 f(q1, q2, , qm) = 0 mjXqniaijij, 2 , 1,1ys = (ys1, ys2, ,ysm)T , s = 1,2, m-rF( 1, 2, m-r ) = 0 与与 f (q1, q2, , qm) =0 等价等价, F未定未定Pi定理定理 (Buckingham)是与量纲单位
4、无关的物理定律,是与量纲单位无关的物理定律,X1,X2, , Xn 是基本量是基本量纲纲, n m, q1, q2, , qm 的量纲可表为的量纲可表为,mnijaA量纲矩阵记作量纲矩阵记作rA rank若线性齐次方程组线性齐次方程组0Ay有有 m-r 个基本解,记作个基本解,记作mjyjssjq1为为m-r 个相互独立的无量纲量个相互独立的无量纲量, 且且则则)()()()()()()(201002)(100100)(121311fsvlgTMLAg = LT-2, l = L, = L-3M, v = LT-1, s = L2, f = LMT-2量纲分析示例:量纲分析示例:波浪对航船的阻
5、力波浪对航船的阻力航船阻力航船阻力 fmjXqniaijij, 2 , 1,1航船速度航船速度v, 船体尺寸船体尺寸l, 浸没面积浸没面积 s, 海水密度海水密度 , 重力加速度重力加速度g。mnijaAm=6, n=30),(fsvlg0),(21mqqqfTTTyyy) 1, 0, 0()0, 1, 0()0, 0, 1(321flgslvlg13132221211, 1, 3, 1, 0, 2, 0, 0 , 2/ 1, 2/ 1Ay=0 有有m-r=3个基本解个基本解rank A = 3rank A = rAy=0 有有m-r个基本解个基本解ys = (ys1, ys2, ,ysm)T
6、 s = 1,2, m-rmjyjssjq1m-r 个无量纲量个无量纲量0),(21mqqqf0),(fsvlg F( 1, 2 , 3 ) = 0与与 (g,l, ,v,s,f) = 0 等价等价flgslvlg13132221211为得到阻力为得到阻力 f 的显式表达式的显式表达式F=0),(213 未定未定mjyjssjq1F( 1, 2, m-r ) = 0 与与 f (q1, q2, , qm) =0 等价等价221213,),(lsglvglf量纲分析法的评注量纲分析法的评注 物理量的选取物理量的选取 基本量纲的选取基本量纲的选取 基本解的构造基本解的构造 结果的局限性结果的局限性
展开阅读全文