矩阵的相似变换和特征值-08课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《矩阵的相似变换和特征值-08课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩阵 相似 变换 特征值 08 课件
- 资源描述:
-
1、二二. 性质性质 的特例是的特例是注注1. 几何意义几何意义A3 3 y=A = / y=A 注注2. 否则否则, = , R, A = = 但是可以但是可以 =0, 此时此时, A = 0 = 核核 1, 2, t对应于对应于 的的所有特征向量为所有特征向量为 k1 1+k2 2+kt t , k1, kt 不全不全为为0.0.先解先解| IA|=0, 求出求出所有特征值所有特征值 , 3 1 40 2 0 1 1 2A 2 0 1 0 3 40 1 1A 二二. 性质性质 二二. 性质性质 ,s.t. A = . 先解先解| IA|=0, 求求 ; 将将 代入代入( IA) = , 求非零
2、通解求非零通解. 设设3阶矩阵阶矩阵A的特征值为的特征值为2,1, 1,则则1?AA2 1120A 5,2, 221522102AA 设设3阶矩阵阶矩阵A的特征值为的特征值为1,2,3, 则则trB *2BIA1 2 36A *1AA A *2BIA21211iiA的特征值为的特征值为即即 11, 5, 3 19trB 1.设设A是是n阶方阵阶方阵, 对于对于数数 , 存在存在n维维向量向量 , 使得使得A = , 则称则称 为为A的的一个一个。由由A = 得齐次线性方程组得齐次线性方程组( IA) = , 它有它有非零非零解解 | IA|=0 IA不可逆不可逆若若A为方阵为方阵, ( I A
3、)不可逆,则不可逆,则 是是A的一个特征值的一个特征值.A为方阵为方阵,若若 不是不是A的特征值的特征值, 则则( I A)可逆可逆.设设3阶矩阵阶矩阵A的特征值为的特征值为2,1, 1,则可逆的矩阵为则可逆的矩阵为(A) I A (B) I+A(C) 2I A(D) 2I+A若方阵若方阵A不可逆,则不可逆,则A的一个特征值为的一个特征值为( )( )0若方阵若方阵A满足满足A2=2A, ,0不是不是A的特征值的特征值, ,则则A=A可逆可逆A = 2IEx.二二. 性质性质 ,s.t. A = . 先解先解| IA|=0, 求求 ; 将将 代入代入( IA) = , 求非零通解求非零通解.
4、二二. 性质性质 求求A11. 设设P 1AP = , P = , =, A = P P 1 A11 = (P P 1)(P P 1)(P P 1)(P P 1) 11 = = P 11P 1 A与与 相似相似n阶方阵阶方阵A有有n个个不同的特征值不同的特征值, 则则A与对角矩阵相似与对角矩阵相似.n阶方阵阶方阵A, 求求可逆矩阵可逆矩阵P, 使使 3 1 40 2 0 1 1 2A4112000411IA 22132rIAnn101010 ,411P 200020001 3 1 40 2 0 1 1 2A101010 ,411P 200020001 211133341133320102022
展开阅读全文