相互独立事件有一个发生的概率课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《相互独立事件有一个发生的概率课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相互 独立 事件 一个 发生 概率 课件
- 资源描述:
-
1、引例引例1 1:n甲坛子里有甲坛子里有3 3个白球个白球2 2个黑球个黑球, ,乙坛子里有乙坛子里有2 2个白球个白球2 2个黑球个黑球, ,从两个坛子里分别摸出从两个坛子里分别摸出1 1个球个球, ,求它们都是白球的概率求它们都是白球的概率. .相互独立事件:事件事件A A(B B)是否发生对事件)是否发生对事件B B(A A)发生的概率没有影响,这样的两个发生的概率没有影响,这样的两个事件叫做事件叫做相互独立相互独立. . 相互独立事件同时发生的 概率乘积公式:)()()(BPAPBAP是相互独立事件,则:nAAA,21 是相互独立事件,则:BA,)(.)()().(2121nnAPAPA
2、PAAAP推而广之,广而推之:推而广之,广而推之:整体独立n甲坛子里有甲坛子里有3 3个白球个白球2 2个黑球个黑球, ,乙坛子里有乙坛子里有2 2个白球个白球2 2个黑球个黑球, ,从两个坛子里分别摸出从两个坛子里分别摸出1 1个球个球, ,从甲坛子里摸出从甲坛子里摸出1 1个黑球个黑球, ,从从乙坛子里摸出乙坛子里摸出1 1个白球的概率个白球的概率. .引例引例2 2: 1. 甲、乙甲、乙2 2人个进行射击人个进行射击1 1次,如果次,如果2 2人人击中目标的概率都是击中目标的概率都是0.60.6,计算:,计算:(1 1)2 2人都击中目标的概率;人都击中目标的概率;(2 2)其中恰有)其
3、中恰有1 1人击中目标的概率;人击中目标的概率;(3 3)至少有)至少有1 1人击中目标的概率。人击中目标的概率。2. 在一段线路中并联着在一段线路中并联着3 3个自动控个自动控制的常开开关,只要其中有一制的常开开关,只要其中有一个开关能够闭合,线路就能正个开关能够闭合,线路就能正常工作。假定在某段时间内每常工作。假定在某段时间内每个开关能够闭合的概率都是个开关能够闭合的概率都是0.70.7,计算在这段时间内线路正常工计算在这段时间内线路正常工作的概率。作的概率。 引例引例2 2 某射击手射击某射击手射击1 1次,击中目标次,击中目标的概率是的概率是0.90.9,他射击,他射击4 4次恰次恰好
4、击中好击中3 3次的概率是多少?次的概率是多少?成功次数(k次)模型之一:次的概率是:发生事件恰好次独立重复试验中这个那么在,的概率是在其中一次试验中发生事件如果次,独立重复试验中,一般地:在knPAn.)1 ()(knkknnpPCkP可称二项分布可称二项分布3.某气象站天气预报的准确率为某气象站天气预报的准确率为8080, ,计算计算( (结果保留两个有效数字结果保留两个有效数字) )(1)5(1)5次预报中恰有次预报中恰有4 4次准确的概率次准确的概率; ;(2)5(2)5次预报中至少有次预报中至少有4 4次准确的概率次准确的概率. .4.甲在与乙进行乒乓球单打比赛时获胜的甲在与乙进行乒
5、乓球单打比赛时获胜的概率为概率为0.6,0.6,甲与乙比赛甲与乙比赛3 3次次, ,通过计算填通过计算填写下表:写下表:0.0640.2880.4320.216和为和为1 15.31,41甲乙两人独立的破译一个密码甲乙两人独立的破译一个密码,他们译出密码的概率分别为他们译出密码的概率分别为 和和求求:(1)两人都能译出的概率两人都能译出的概率.(2)两人都译不出的概率两人都译不出的概率.(3)恰有一人译出的概率恰有一人译出的概率.(4)至多一人译出的概率至多一人译出的概率.6.上题中若要达到译出密码的概上题中若要达到译出密码的概率为率为0.99,0.99,至少需要多少个乙至少需要多少个乙这样的
6、人这样的人? ?7.有三个电器元件有三个电器元件, ,每个元件损坏的概率为每个元件损坏的概率为P,P,按以下两种方法连接在某一线路中按以下两种方法连接在某一线路中, ,求该线求该线路能正常工作的概率路能正常工作的概率. .如图如图: :已知电路中已知电路中4 4个开关闭合个开关闭合的概率都是的概率都是0.5,0.5,且互相独立且互相独立, ,求灯亮的概率求灯亮的概率. .8.9.如图:用如图:用A A、B B、C C三类不同的元件连接成两个系三类不同的元件连接成两个系统,当元件统,当元件A A、B B、C C都正常工作时,系统正常工都正常工作时,系统正常工作,当元件作,当元件A A正常工作且元
7、件正常工作且元件B B、C C至少有一个正至少有一个正常工作时,系统正常工作,已知元件常工作时,系统正常工作,已知元件A A、B B、C C正正常工作的概率分别为常工作的概率分别为0.800.80,0.900.90,0.900.90。分别求。分别求系统正常工作的概率系统正常工作的概率. . 作业作业1 1:.如图如图: :已知电路中已知电路中5 5个开关闭合的概个开关闭合的概率都是率都是0.7,0.7,且是相互独立的且是相互独立的, ,求灯求灯亮的概率亮的概率. .作业作业2 2:如图所示的电路,该系统是由四个二极如图所示的电路,该系统是由四个二极管(串联,并联)连接而成。已知每个管(串联,并
8、联)连接而成。已知每个二极管的可靠度为二极管的可靠度为0.80.8,若要求系统的可,若要求系统的可靠度大于靠度大于0.850.85,请你设计二极管的连接,请你设计二极管的连接方式,并加以说明方式,并加以说明 10.一个学生通过某种英语听力测试一个学生通过某种英语听力测试的概率是的概率是0.50.5,他连续测试两,他连续测试两次,那么其中有一次通过的概率次,那么其中有一次通过的概率是多少?是多少?11.在一段时间内,甲去某地的概在一段时间内,甲去某地的概率率0.25,0.25,为乙去某地的概率为为乙去某地的概率为0.2;0.2;假定两人的行动之间没有影响,假定两人的行动之间没有影响,那么这段时间
9、内至少有一人去此那么这段时间内至少有一人去此地的概率是多少?地的概率是多少?12.某射手每某射手每5 5发子弹平均有发子弹平均有3 3发能射中:发能射中:(1)(1)试求射击试求射击n n发子弹时每发都发子弹时每发都 射不中的概率射不中的概率. .(2 2)设这个射手至少有一发射中的)设这个射手至少有一发射中的 概率大于概率大于0.999,0.999,试问此时他必须射试问此时他必须射多少次多少次. .13.已知奖券中有一半会中奖,为已知奖券中有一半会中奖,为了保证至少有一张奖券能以大了保证至少有一张奖券能以大于于0.950.95的概率中奖,问至少应的概率中奖,问至少应购买多少张奖券购买多少张奖
展开阅读全文