机器学习简介及实例作业课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《机器学习简介及实例作业课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 简介 实例 作业 课件
- 资源描述:
-
1、机器学习什么是机器学习 现今,机器学习已应用于多个领域,远超出大多数人的想象,下面就是假想的一日,其中很多场景都会碰到机器学习: 假设你想起今天是某位朋友的生日,打算通过邮局给她邮寄一张生日贺卡。你打开浏览器搜索趣味卡片,搜索引擎显示了10个最相关的链接。你认为第二个链接最符合你的要求,点击了这个链接,搜索引擎将记录这次点击,并从中学习以优化下次搜索结果。然后,你检查电子邮件系统,此时垃圾邮件过滤器已经在后台自动过滤垃圾广告邮件,并将其放在垃圾箱内。接着你去商店购买这张生日卡片,并给你朋友的孩子挑选了一些尿布。结账时,收银员给了你一张1美元的优惠券,可以用于购买6罐装的啤酒。之所以你会得到这张
2、优惠券,是因为款台收费软件基于以前的统计知识,认为买尿布的人往往也会买啤酒。然后你去邮局邮寄这张贺卡,手写识别软件识别出邮寄地址,并将贺卡发送给正确的邮车。当天你还去了贷款申请机构,查看自己是否能够申请贷款,办事员并不是直接给出结果,而是将你最近的金融活动信息输入计算机,由软件来判定你是否合格。机器学习问题的几个实例机器学习问题的几个实例机器学习问题到处都是,它们组成了日常使用的网络或桌面软件的核心或困难部分。苹果的Siri语音理解系统就是实例。以下,是几个真正有关机器学习到底是什么的的实例。1、垃圾邮件检测:根据邮箱中的邮件,识别哪些是垃圾邮件,哪些不是。这样的模型,可以程序帮助归类垃圾邮件
3、和非垃圾邮件。这个例子,我们应该都不陌生。2、信用卡欺诈检测:根据用户一个月内的信用卡交易,识别哪些交易是该用户操作的,哪些不是。这样的决策模型,可以帮助程序退还那些欺诈交易。3、数字识别:根据信封上手写的邮编,识别出每一个手写字符所代表的数字。这样的模型,可以帮助程序阅读和理解手写邮编,并根据地利位置分类信件。4、语音识别:从一个用户的话语,确定用户提出的具体要求。这样的模型,可以帮助程序能够并尝试自动填充用户需求。带有Siri系统的iPhone就有这种功能。5、人脸识别:根据相册中的众多数码照片,识别出那些包含某一个人的照片。这样的决策模型,可以帮助程序根据人脸管理照片。某些相机或软件,如
4、iPhoto,就有这种功能。什么是机器学习1、林轩田林轩田:机器学习想做的事情,简单的说是要从资料中归纳出有用的规则。大数据说的是对大量的资料做机器学习想做的事情,简单的说是要从资料中归纳出有用的规则。大数据说的是对大量的资料做分析,而人工智能说的是让机器看起来更聪明,两者都可以使用机器学习来做核心的工具。分析,而人工智能说的是让机器看起来更聪明,两者都可以使用机器学习来做核心的工具。 我们可以举我们可以举 2012 年的年的 KDD-Cup 做例子,当年腾讯给的题目之一,是希望能从大量的线上广告资料中,做例子,当年腾讯给的题目之一,是希望能从大量的线上广告资料中,找出找出“这个广告到底会不会
5、被点击这个广告到底会不会被点击”的规则,如果机器能找出有用的规则,我们就会有更高的规则,如果机器能找出有用的规则,我们就会有更高“智能智能”的广告的广告系统了。系统了。2、Arthur Samuel定义的机器学习定义的机器学习(1959)“在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域”3、通俗讲,机器学习,两部分:首先是、通俗讲,机器学习,两部分:首先是“机器机器”,这个机器一般其实指的就是,这个机器一般其实指的就是“电脑电脑”其次学习,这个学习也分为两部分,一是其次学习,这个学习也分为两部分,一是“数据数
6、据”二是二是“算法算法”。其实和人是一样的,比如你父母教你认识。其实和人是一样的,比如你父母教你认识“打棒球打棒球”这个体育运动的时候。肯定要给你看打棒球的图片或者视频,或者需要跟你描述这个运动,这些这个体育运动的时候。肯定要给你看打棒球的图片或者视频,或者需要跟你描述这个运动,这些就是就是“数据数据”。至于说。至于说“算法算法”的话,描述本身就是一种算法。比如他们告诉你的话,描述本身就是一种算法。比如他们告诉你“拿着球棒,这样那样挥舞拿着球棒,这样那样挥舞击球的就是棒球击球的就是棒球”。这样,在没有他们帮助的情况下,再给你一个新的打棒球的图片,你也认出这是打棒球。这样,在没有他们帮助的情况下
7、,再给你一个新的打棒球的图片,你也认出这是打棒球4、简单讲就是,总结过去,预测未来。、简单讲就是,总结过去,预测未来。什么是机器学习机器学习问题的类型机器学习问题的类型 关于机器学习,有一些常见的分类。以下这些分类,是我们在研究机器学习时碰到的大多问题都会参考的典型。分类分类:标记数据,也就是将它归入某一类,如垃圾/非垃圾(邮件)或欺诈/非欺诈(信用卡交易)。决策建模是为了标记新的未标记的数据项。这可以看做是辨别问题,为小组之间的差异性或相似性建模。回归回归:数据被标记以真实的值(如浮点数)而不是一个标签。简单易懂的例子如时序数据,如随着时间波动的股票价格。这个建模的的决策是为新的未预测的数据
8、估计值。聚类聚类:不标记数据,但是可根据相似性,以及其他的对数据中自然结构的衡量对数据进行分组。可以从以上十个例子清单中举出一例:根据人脸,而不是名字,来管理照片。这样,用户就不得不为分组命名,如Mac上的iPhoto。规则提取规则提取:数据被用作对提议规则(前提/结果,又名如果)进行提取的基础。这些规则,可能但不都是有指向的,意思是说,这些方法可以找出数据的属性之间在统计学上有说服力的关系,但不都是必要的涉及到需要预测的东西。有一个找出买啤酒还是买尿布之间关系的例子,(这是数据挖掘的民间条例,真实与否,都阐述了期望和机会)。实例详解机器学习如何解决问题实例详解机器学习如何解决问题什么是机器学
9、习?机器学习可以分为无监督学习(unsupervised learning)和有监督学习(supervised learning),在工业界中,有监督学习是更常见和更有价值的方式,下文中主要以这种方式展开介绍。如下图中所示,有监督的机器学习在解决实际问题时,有两个流程,一个是离线训练流程(蓝色箭头),包含数据筛选和清洗、特征抽取、模型训练和优化模型等环节;另一个流程则是应用流程(绿色箭头),对需要预估的数据,抽取特征,应用离线训练得到的模型进行预估,获得预估值作用在实际产品中。在这两个流程中,离线训练是最有技术挑战的工作(在线预估流程很多工作可以复用离线训练流程的工作),所以下文主要介绍离线训
展开阅读全文