数学建模排队论课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学建模排队论课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 排队 课件
- 资源描述:
-
1、排队论课件1现实生活中的实例:进餐馆就餐到图书馆借书去售票处购票在车站等车等等排队论课件2一、排队系统的特征及排队论: 顾客为了得到某中服务而到达系统,若不能获得服务而允许排队等待,则加入等待队伍,待获得服务后离开系统。排队论课件3排队的形式:顾客到达队列 服务台服务完成后离去 服务台1 服务台2 服务台s顾客到达队列服务完成后离去顾客到达队列1队列2队列s 服务台1 服务台2 服务台s服务完成后离去服务完成后离去服务完成后离去排队论课件4随机服务系统:输入来源队 列服务机构排队系统排队系统顾客服务完离开排队论课件5二、排对系统的描述系统由三个部分组成:输入过程排队和排队规则服务机制排队论课件
2、61、输入过程(1)顾客总数量:有限或者无限(2)到达方式:单个到达或成批到达(3)到达方式: 顾客相继到达时间间隔的分布,这是刻画输入过程的最主要内容。 令, 00TnT01,nTTTLL表示第n个顾客到达的时刻,则有:记), 2 , 1(1nTTXnnn假设:nX是独立同分布的,并记其分布函数为),(tA关于的分布,nX排队论中经常用到以下几种:排队论课件7 定长分布(D): 顾客相继到达时间间隔为确定的常数,如产品通过传输带进入包装箱 最简流(或称poisson分布)(M):顾客相继到达时间间隔nX000)(ttetat为独立, 同负指数分布,其密度函数为:排队论课件82、排队及排队规则
3、(1)排队分为有限和无限排队损失制排队系统: 排队空间为零的系统混合制排队系统: 等待制和损失制的结合,是指允许排队,但是不允许队列无限长下去,具体的又分三种情况:()队长有限,即等待空间有限()等待时间有限,即顾客在系统中等待时间不超过某一给定的长度T()逗留时间(等待时间和服务时间之和)(系统只能容纳K个顾客)排队论课件9不难注意到损失制和等待制可以看成是混合制的特殊情况如记ssK 为系统中服务台的个数, 当时,混合制即为损失制当K时,即成为等待制。(2)排队规则:先来先服务(FCFS)排队论课件103、服务机制主要包括:服务员的数量及其连接形式(串联或并联);顾客是单个还是成批接受服务的
4、;服务时间的分布。记某服务台的服务时间为V, 其分布函数为B(t), 密度函数为b(t), 则常见的分布有: 定长分布(D):每位顾客接受的服务的时间是常数; 负指数分布(M): 每位顾客接受服务时间相互独立,具有相同的负指数分布:排队论课件11000)(ttetbt0: )(kE其中为一常数。k阶爱尔朗分布密度函数为tkkektkktb)!1()()(1排队论课件12三、排队系统的符号表示为了方便对众多的模型的描述,D.G.Kendall提出了一种目前在排队论中被广泛的使用的“Kendall记号”,一般形式为:X/Y/Z/A/B/C其中X表示顾客相继到达时间间隔的分布,Y表示服务时间分布,
5、Z表示服务台的个数; A表示系统的容纳,即可容纳最多顾客数B表示顾客源的数目;C表示服务规则;排队论课件13FCFSMM/1/表示了一个顾客的到达时间间隔服从相同的负指数分布,服务时间为负指数分布、单个服务台、系统容量为无限、顾客量无限、 排队规则为先来先服务的排队模型。排队论课件14四、排队系统的主要数量指标和记号1、队长和排队长2、等待时间和逗留时间3、忙期和闲期排队论课件15下面给出上述一些主要数量指标的常用记法:)(tTq时刻 t 系统中的顾客数,即队长)(tN)(tNq时刻 t 系统中排队的顾客数,即排队长)(tT时刻 t 到达系统的顾客在系统中的逗留时间时刻 t 到达系统的顾客在系
展开阅读全文