书签 分享 收藏 举报 版权申诉 / 29
上传文档赚钱

类型数值分析牛顿科特斯公式课件.ppt

  • 上传人(卖家):三亚风情
  • 文档编号:2237760
  • 上传时间:2022-03-24
  • 格式:PPT
  • 页数:29
  • 大小:556KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数值分析牛顿科特斯公式课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数值 分析 牛顿 科特斯 公式 课件
    资源描述:

    1、牛顿牛顿- -科特斯公式科特斯公式q 等距节点的插值型求积公式称为等距节点的插值型求积公式称为牛顿牛顿- -科特斯公式科特斯公式:取等距节点:取等距节点:xi = a + i h, ,i = 1, 2, , nnabh令令 x = a + t h 得:得: baijjijbaiixxxxxxxld d)(Anbaxfxxf0kkk)(Ad)(q 插值型求积公式插值型求积公式baxxld)(Akk其中其中 nijthjijt0d njiindtjtininab0)()!( !)1)(牛顿牛顿- -科特斯公式(续)科特斯公式(续)注:注:Cotes 系数系数仅取决于仅取决于 n 和和 i,可通过查

    2、表得到。,可通过查表得到。与被积函数与被积函数 f (x) 及积分区间及积分区间 a, b 均无关。均无关。 njiinidtjtininab0)()!( !) 1)(A科特斯科特斯(Cotes)系数系数)(niCq 牛顿牛顿- -科特斯公式科特斯公式:niinibaxfCabxxf0)()()(d)(几个常见公式几个常见公式21,21)1(1)1(0 CCn = 1:)()(2)(bfafabdxxfba 代数精度代数精度 = 1梯形求积公式梯形求积公式n = 2:61,32,61)2(2)2(1)2(0 CCC)()(4)(6)(2bffafabdxxfbaba 代数精度代数精度 = 3抛

    3、物线求积公式抛物线求积公式Simpson求积公式求积公式n = 4:)(7)(32)(12)(32)(790)(43210 xfxfxfxfxfabdxxfba科特斯科特斯(Cotes)求积公式求积公式4/ )( ,abhhiaxiTSC科特斯系数表科特斯系数表系数特点和稳定性系数特点和稳定性q 科特斯系数具有以下特点:科特斯系数具有以下特点:(1) 10)(niniC(2) )()(ninniCC(3) 当当 n 8 时,出现负数,时,出现负数,稳定性得不到保证稳定性得不到保证。而且。而且当当 n 较大时,由于较大时,由于Runge现象,现象,收敛性也无法保证收敛性也无法保证。故故一般一般不

    4、采用不采用高阶的牛顿高阶的牛顿- -科特斯求积公式科特斯求积公式。q 当当 n 7 时,牛顿时,牛顿- -科特斯公式是稳定的。科特斯公式是稳定的。牛顿牛顿- -科特斯公式的代数精度科特斯公式的代数精度定理定理当当 n 为偶数时,牛顿科特斯公式至少有为偶数时,牛顿科特斯公式至少有 n+1 阶阶代数精度。代数精度。证证:只要证明当只要证明当 n 为偶数时,公式对为偶数时,公式对f (x)xn+1精确成立。精确成立。xxxnffRniiband )( )!1()(0)1( 由插值型求积公式的误差公式得由插值型求积公式的误差公式得 d )(0 baniixxx作变量代换作变量代换 x = a + t

    5、h,并将,并将 xi = a + i h 代入得代入得 d )(002 nnintithfR再作变量代换再作变量代换 t = n - s,得,得 )d( )(002 nninsisnhfR d )()1(0021 nninnsinsh又又niniisins00)(fRfR0fRn 偶数偶数余项余项q 梯形公式的余项梯形公式的余项xbxaxfTxxfRbaxbaTd )( ! 2)(d )( xbxaxfbad )()(21 )()(1213 fab 中值定理中值定理q Simpson公式的余项公式的余项SxxfRbaS d )(xbxxaxfbabaxd )()( ! 4)(22)4( xbx

    6、xaxfbabad )()()(24122)4( )()(28801)4(5 fab 三次三次Hermite插值插值 babadxxgfdxxgxfbabaxgbaxgxf)()()()(,)(,)(),( 使得使得则则上不变号上不变号在在且且上连续,上连续,均在均在积分中值定理积分中值定理余项的一般形式余项的一般形式 nnnnbatntttnnfabfQxxf023)2(3d )()1()!2()()(d )( 定理定理(1) 若若 n 为偶数,为偶数, f (x) Cn+2a, b ,则存在,则存在 (a, b) 使得使得设设 ,则有,则有 niinixfCabfQ0)()()(2) 若若

    7、 n 为奇数,为奇数, f (x) Cn+1a, b ,则存在,则存在 (a, b) 使得使得 nnnnbatntttnnfabfQxxf022)1(2d )()1()!1()()(d )( 举例(一)举例(一)q 例:例:分别用梯形公式和分别用梯形公式和simpson公式计算积分公式计算积分 10dxe-x解:解:a0, b1, f (x) = e -x ,由由 simpson 公式可公式可得得 6323. 0461)()(4)(615 . 002 eeebffafabSba 6839. 021)()(210 eebfafabT由由梯形公式可梯形公式可得得 与精确值与精确值 0.6321 相

    8、比相比得误差分别为得误差分别为 0.0518 和和 0.0002。复合求积公式复合求积公式q 提高积分计算精度的常用两种方法提高积分计算精度的常用两种方法 用用 复合公式复合公式 用用 非等距节点非等距节点q 复合求积公式:复合求积公式:将积分区间分割成多个小区间,然将积分区间分割成多个小区间,然后在每个后在每个小区间小区间上使用低次牛顿科特斯求积公式。上使用低次牛顿科特斯求积公式。q 将将a, b 分成分成 n 等分等分 xi , xi+1 ,其中节点,其中节点(i = 0, 1, , n)nabhhiaxi ,复合梯形公式复合梯形公式q 复合梯形公式复合梯形公式:)()(2d )(d )(

    9、110101 iibaninixxxfxfhxxfxxfii )()(2)(2d )(11bfxfafhxxfniibaTnq 余项:余项: 103)(12niinfhTfI 103)(12niifh 10)(1)(niifnf )(122 fhab , (a, b)复合复合simpson公式公式q 复合复合simpson公式公式: )()(2)(4)(6d )(111021bfxfxfafhxxfniiniibaSn)()(4)(6d )(11021 iiibanixfxfxfhxxfq 余项:余项: 10)4(5)(2880niinfhSfI 10)4(5)(2880niifh 10)4(

    10、)4()(1)(niifnf )(2880)4(4 fhab , (a, b)kx21 kx1 kx44444复合科特斯公式复合科特斯公式q 复合复合cotes公式公式:Cnq 余项:余项: )(12)(32)(790d )(10102141niiniibaxfxfafhxxf )(7)(14)(32111043bfxfxfniinii)(4945)( 2)6(6 fhabCfIn , (a, b)举例(二)举例(二)解:解:q 例:例:设设 ,利用下表中的数据分别用复合梯,利用下表中的数据分别用复合梯形公式和复合形公式和复合simpson公式计算积分公式计算积分 xxxfsin)( 10ds

    11、inxxxxi01/82/83/84/85/86/87/81.0f (xi )10.9970.9900.9770.9540.9360.9090.8770.8419456909. 0)()(2)(16187108 xfxfxfTii )()()()(4)(241753104xfxfxfxfxfS 9460832. 0)()()()(28642 xfxfxfxfh 很小时的误差很小时的误差 103)(12niinfhTfI i (xi, xi+1 ) 102)(121niinhfhTfI xxfbad )(121 (h 0)定积分定义定积分定义即即 )()(122afbfhTfIn 同理同理 )(

    12、)(21801)3()3(4afbfhSfIn )()(49452)5()5(6afbfhCfIn 收敛速度与误差估计收敛速度与误差估计定义定义 若一个积分公式的误差满足若一个积分公式的误差满足 且且C 0,则称该公式是则称该公式是 p 阶收敛阶收敛的。的。 ChfRphlim0)(,)(,)(642hOChOShOTnnn例:例:计算计算dxx 10142 解:解: )1()(2)0(161718fxffTkk8kxk 其中其中= 3.138988494 )1()(2)(4)0(241oddeven4fxfxffSkk8kxk 其中其中= 3.141592502运算量基运算量基本相同本相同Q

    13、: 给定精度给定精度 ,如何取,如何取 n ?例如:要求例如:要求 ,如何判断,如何判断 n = ? |nTI)()(122 fabhfR ? nkkhfh12)(12 )()(12)(1222afbfhdxxfhba 上例中若要求上例中若要求 ,则,则610| nTI622106| )0() 1 (|12| | hffhfRn00244949. 0 h即:取即:取 n = 409通常采取将区间通常采取将区间不断对分不断对分的方法,即取的方法,即取 n = 2k上例中上例中2k 409 k = 9 时,时,T512 = 3.14159202注意到区间再次对分时注意到区间再次对分时412)()(

    14、12122fRhafbffRnn 412 nnTITI)(3122nnnTTTI 可用来判断迭代可用来判断迭代 是否停止。是否停止。Q: 给定精度给定精度 ,如何取,如何取 n ?2.3 龙贝格算法龙贝格算法n梯形法的递推化梯形法的递推化n龙贝格算法龙贝格算法n理查森外推加速法理查森外推加速法1 梯形法的递推化梯形法的递推化方法思路方法思路 : :复化求积方法可提高求积精度,实际计算复化求积方法可提高求积精度,实际计算时可以将步长逐次分半。时可以将步长逐次分半。在每个子区间在每个子区间 x xk k,x,xk+1k+1 经过二分只增加了一经过二分只增加了一个分点个分点x xk+1/2k+1/2

    15、=1/2(x=1/2(xk k+x+xk+1k+1),),用复化梯形公式用复化梯形公式求得该子区间上的积分值为求得该子区间上的积分值为)()(2)(412/1kkkxfxfxfh注意,这里h=(a+b)/n代表二分前的步长。将每个子区间上的积分值相加得1010214)()()(21nknkkhkkhxfxfxfT从而可导出下列递推公式从而可导出下列递推公式10)(22121nkknxfhTT1 梯形法的递推化梯形法的递推化 龙贝格算法龙贝格算法龙贝格积分法是在计算梯形和序列的龙贝格积分法是在计算梯形和序列的基础上应用了线性外推的加速方法,基础上应用了线性外推的加速方法,由此构成的一种具有超线性

    16、收敛的自由此构成的一种具有超线性收敛的自动积分法动积分法 基本思想基本思想根据复化梯形公式的余项表达式可知),(),(122bafhabTIn ),(),()(12222bafabTIhn ,则有假定)()(ff 412nnTITI将上式移项整理,可得将上式移项整理,可得)(3122nnnTTTI可以做这样的补偿可以做这样的补偿nnnnnnSTTTTTT3134)(31222基本思想基本思想同理同理1612nnSISI由此得到由此得到nnnCSSI15115162同理同理nnnCCR63163642基本思想基本思想由此法,可得如下三角形数表由此法,可得如下三角形数表梯形梯形辛卜生辛卜生柯特斯柯

    17、特斯龙贝格龙贝格T0T3T2T1S0 S2S1 C0 C1 D0基本思想基本思想样条插值积分样条插值积分q 用三次样条插值函数用三次样条插值函数 S(x) 近似被积函数近似被积函数 f (x) ,从而得到样条插值积分公式。从而得到样条插值积分公式。nabh(i = 0, 1, , n) 将将a, b 分分 n 等分等分 , ,hiaxi 设设 S(xi)mi ,则,则 S (x) 在在 xi , xi+1 上为满足以下条件上为满足以下条件的三次多项式:的三次多项式:)()( ),()(11iiiixfxSxfxS11)( ,)(iiiimxSmxS,由三次由三次 Hermite 插值多项式公式

    18、插值多项式公式(P.46)可得可得)()(2)(1)(213iiixfxxhxxhxS1122212)()(1)(1iiiiiimxxxxhmxxxxh)()(2)(11123iiixfxxhxxh样条插值积分(续)样条插值积分(续)于是有于是有)(8)()(21)(1121iiiiimmhxfxfxS 由于由于 S (x) 在在 xi , xi+1 上为三次多项式,所以上为三次多项式,所以simpson公式精确成立,即公式精确成立,即)(12)()(2 )()(4)(6d )(1211211iiiiiiixxmmhxfxfhxSxSxShxxSii于是得积分公式于是得积分公式)()(12)()(2)(2 d )(d )(d )(211101011afbfhbfxfafhxxSxxfxxfniinixxnixxbaiiiiUn样条插值积分(续)样条插值积分(续))()(12 )()(2)(2211afbfhbfxfafhniiUnTn nTfI余项:余项:)( 720d )(4)4 fhabUxxfRnbaU只增加计算两端点的导数,计算精度即由只增加计算两端点的导数,计算精度即由O(h2) 提高到提高到O(h4)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数值分析牛顿科特斯公式课件.ppt
    链接地址:https://www.163wenku.com/p-2237760.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库