数字信号处理习题答案西安电子第7章课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数字信号处理习题答案西安电子第7章课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 习题 答案 西安 电子 课件
- 资源描述:
-
1、有限脉冲响应(FIR)数字滤波器的设计第章解解: (1) 由所给h(n)的取值可知,h(n)满足h(n)=h(N1n), 所以FIR滤波器具有A类线性相位特性: 5 . 221)(N由于N=6为偶数(情况2), 所以幅度特性关于=点奇对称。 (2) 由题中h(n)值可知, h(n)满足h(n)=h(N1n), 所以FIR滤波器具有B类线性相位特性: 32212)(N由于7为奇数(情况3), 所以幅度特性关于=0, , 2三点奇对称。有限脉冲响应(FIR)数字滤波器的设计第章2 已知第一类线性相位FIR滤波器的单位脉冲响应长度为16, 其16个频域幅度采样值中的前9个为: Hg(0)=12, H
2、g(1)=8.34, Hg(2)=3.79, Hg(3)Hg(8)=0 根据第一类线性相位FIR滤波器幅度特性Hg()的特点, 求其余7个频域幅度采样值。 解解: 因为N=16是偶数(情况2), 所以FIR滤波器幅度特性Hg()关于=点奇对称, 即Hg(2)=Hg()。 其N点采样关于k=N/2点奇对称, 即Hg(Nk)=Hg(k) k=1, 2, , 15综上所述, 可知其余7个频域幅度采样值: Hg(15)=Hg(1)=8.34, Hg(14)=Hg(2)=3.79, Hg(13)Hg(9)=0有限脉冲响应(FIR)数字滤波器的设计第章3 设FIR滤波器的系统函数为)9 . 01 . 29
3、 . 01 (101)(4321zzzzzH求出该滤波器的单位脉冲响应h(n), 判断是否具有线性相位, 求出其幅度特性函数和相位特性函数。解解: 对FIR数字滤波器, 其系统函数为104321)9 . 01 . 29 . 01 (101)()(NnnzzzzZnhzH有限脉冲响应(FIR)数字滤波器的设计第章1( )1, 0,9, 2.1, 0.9,110h n 由h(n)的取值可知h(n)满足: h(n)=h(N1n) N=5所以, 该FIR滤波器具有第一类线性相位特性。 频率响应函数H(ej)为所以其单位脉冲响应为有限脉冲响应(FIR)数字滤波器的设计第章10j)(jgje )(e )(
4、)e (NnmnhHHee9 . 0e1 . 2e9 . 01 1014 j3 j2 jj2 j2 jjj2 je )ee9 . 01 . 2e9 . 0e (1012 je )2cos2cos8 . 11 . 2(101有限脉冲响应(FIR)数字滤波器的设计第章幅度特性函数为 102cos2cos8 . 11 . 2)(gH相位特性函数为221)(N4 用矩形窗设计线性相位低通FIR滤波器, 要求过渡带宽度不超过/8 rad。 希望逼近的理想低通滤波器频率响应函数Hd(ej)为有限脉冲响应(FIR)数字滤波器的设计第章 |0 | 0e)e (cjjdcaH(1) 求出理想低通滤波器的单位脉冲
5、响应hd(n);(2) 求出加矩形窗设计的低通FIR滤波器的单位脉冲响应h(n)表达式, 确定与N之间的关系; (3) 简述N取奇数或偶数对滤波特性的影响。解: (1)ccjjjjddc11( )(e)edeed22sin() ()nnh nHnn有限脉冲响应(FIR)数字滤波器的设计第章(2) 为了满足线性相位条件, 要求, N为矩形窗函数长度。 因为要求过渡带宽度rad, 所以要求, 求解得到N32。 加矩形窗函数, 得到h(n): 21Na8N48)()()(sin)()()(cdnRanannRnhnhNNnNaNnanan其它021, 1 0)()(sinc有限脉冲响应(FIR)数字
6、滤波器的设计第章(3) N取奇数时, 幅度特性函数Hg()关于=0, , 2三点偶对称, 可实现各类幅频特性; N取偶数时, Hg()关于=奇对称, 即Hg()=0, 所以不能实现高通、 带阻和点阻滤波特性。 5 用矩形窗设计一线性相位高通滤波器, 要求过渡带宽度不超过/10 rad。 希望逼近的理想高通滤波器频率响应函数Hd(ej)为其它0 | e)e (jjdcaH有限脉冲响应(FIR)数字滤波器的设计第章(1) 求出该理想高通的单位脉冲响应hd(n); (2) 求出加矩形窗设计的高通FIR滤波器的单位脉冲响应h(n)表达式, 确定与N的关系; (3) N的取值有什么限制?为什么?解解:
7、(1) 直接用IFTHd(ej)计算: jjdd1( )(e ) ed2nh nHccjjjj1eedeed2nn有限脉冲响应(FIR)数字滤波器的设计第章ccj()()1eded2njnccj()j()j()j()1eeee2()nnnnna)(sin)(sin)(1cnanan)()(sin)(cananan有限脉冲响应(FIR)数字滤波器的设计第章hd(n)表达式中第2项正好是截止频率为c的理想低通滤波器的单位脉冲响应。 而(n)对应于一个线性相位全通滤波器: Hdap(ej)=ej即高通滤波器可由全通滤波器减去低通滤波器实现。 (2) 用N表示h(n)的长度, 则h(n)=hd(n)R
8、N(n)=)()()(sin)(cnRnnnN)()(sincanan有限脉冲响应(FIR)数字滤波器的设计第章为了满足线性相位条件: h(n)=h(N1n)要求满足12N(3) N必须取奇数。 因为N为偶数时(情况2), H(ej)=0, 不能实现高通。 根据题中对过渡带宽度的要求, N应满足:, 即N40。 取N=41。N4106 理想带通特性为 | |0 | e)e (cccjjdBBHa有限脉冲响应(FIR)数字滤波器的设计第章(1) 求出该理想带通的单位脉冲响应hd(n); (2) 写出用升余弦窗设计的滤波器的h(n)表达式, 确定N与之间的关系; (3) 要求过渡带宽度不超过/16
9、 rad。 N的取值是否有限制?为什么?解解: (1)jjdd1( )()ed2nh nHeccccjjjj()1eedeed2BamanB)()(sin)()(sin(ccananananB有限脉冲响应(FIR)数字滤波器的设计第章上式第一项和第二项分别为截止频率c+B和c的理想低通滤波器的单位脉冲响应。 所以, 上面hd(n)的表达式说明, 带通滤波器可由两个低通滤波器相减实现。 (2) h(n)=hd(n)w(n)ccsin()()sin()20.540.46 cos( )()()1NB nananRnnanaN为了满足线性相位条件, 与N应满足12N有限脉冲响应(FIR)数字滤波器的设
10、计第章实质上, 即使不要求具有线性相位, 与N也应满足该关系, 只有这样, 才能截取hd(n)的主要能量部分, 使引起的逼近误差最小。 (3) N取奇数和偶数时, 均可实现带通滤波器。 但升余弦窗设计的滤波器过渡带为8/N , 所以, 要求, 即要求N128。 7 试完成下面两题:试完成下面两题: (1) 设低通滤波器的单位脉冲响应与频率响应函数分别为h(n)和H(ej), 另一个滤波器的单位脉冲响应为h1(n), 它与h(n)的关系是h1(n)=(1)nh(n)。 试证明滤波器h1(n)是一个高通滤波器。 N816有限脉冲响应(FIR)数字滤波器的设计第章(2) 设低通滤波器的单位脉冲响应与
11、频率响应函数分别为h(n)和H(ej), 截止频率为c, 另一个滤波器的单位脉冲响应为h2(n), 它与h(n)的关系是h2(n)=2h(n)cos0n, 且c0(c)。 试证明滤波器h2(n)是一个带通滤波器。解解: (1) 由题意可知)(ee 21)()cos()() 1()(jj1nhnhnnhnhnnn对h1(n)进行傅里叶变换, 得到有限脉冲响应(FIR)数字滤波器的设计第章mnnnnmnhhHjjjj1j1e ee )(21e )e (e )(e )(21)( j)( jnnnnnhnh)e ()e (21)( j)( jnHH上式说明H1(ej)就是H(ej)平移的结果。 由于H
12、(ej)为低通滤波器, 通带位于以=0为中心的附近邻域, 因而H1(ej)的通带位于以=为中心的附近, 即h1(n)是一个高通滤波器。有限脉冲响应(FIR)数字滤波器的设计第章这一证明结论又为我们提供了一种设计高通滤波器的方法(设高通滤波器通带为c, ): 设计一个截止频率为c的低通滤波器hLp(n)。 对hLp(n)乘以cos(n)即可得到高通滤波器hHp(n) cos(n)=(1)nhLp(n)。 (2) 与(1)同样道理, 代入h2(n)=2h(n) cos0n, 可得2)e ()e ()e ()( j)( jj200HHH有限脉冲响应(FIR)数字滤波器的设计第章因为低通滤波器H(ej
13、)通带中心位于=2k, 且H2(ej)为H(ej)左右平移0, 所以H2(ej)的通带中心位于=2k0处, 所以h2(n)具有带通特性。 这一结论又为我们提供了一种设计带通滤波器的方法。 8 题8图中h1(n)和h2(n)是偶对称序列, N=8, 设 H1(k)=DFTh1(n) k=0, 1, , N1 H2(k)=DFTh2(n) k=0, 1, , N 1 (1) 试确定H1(k)与 H2(k)的具体关系式。 | H1(k)|=| H2(k)|是否成立?为什么?(2) 用h1(n)和h2(n)分别构成的低通滤波器是否具有线性相位?群延时为多少?有限脉冲响应(FIR)数字滤波器的设计第章题
14、8图有限脉冲响应(FIR)数字滤波器的设计第章解解: (1) 由题8图可以看出h2(n)与h1(n)是循环移位关系: h2(n)=h1(n+4)8R8(n)由DFT的循环移位性质可得)() 1()(e)()(11j1482kHkHkHWkHkkk| )(| )(| )(|11482kHkHWkHk(2) 由题8图可知, h1(n)和h2(n)均满足线性相位条件: h1(n)=h1(N1n)h2(n)=h2(N1n)有限脉冲响应(FIR)数字滤波器的设计第章所以, 用h1(n)和h2(n)构成的低通滤波器具有线性相位。 直接计算FTh1(n)和h2(n)也可以得到同样的结论。 设 )(jg11j
15、11e )()(FT)e (HnhH27) 1(21)()(21N)(jg22j22e )()(FT)e (HnhH所以, 群延时为27d)(d112有限脉冲响应(FIR)数字滤波器的设计第章9 对下面的每一种滤波器指标, 选择满足FIRDF设计要求的窗函数类型和长度。 (1) 阻带衰减为20 dB, 过渡带宽度为1 kHz, 采样频率为12 kHz; (2) 阻带衰减为50 dB, 过渡带宽度为2 kHz, 采样频率为20 kHz; (3) 阻带衰减为50 dB, 过渡带宽度为500 Hz, 采样频率为5 kHz。 解解: 我们知道, 根据阻带最小衰减选择窗函数类型, 根据过渡带宽度计算窗函
16、数长度。 为了观察方便, 重写出教材第211页中表7.2.2。有限脉冲响应(FIR)数字滤波器的设计第章有限脉冲响应(FIR)数字滤波器的设计第章结合本题要求和教材表7.2.2, 选择结果如下: (1) 矩形窗满足本题要求。 过渡带宽度1 kHz对应的数字频率为B=200/12 000=/60, 精确过渡带满足:1.8/N/60, 所以要求N1.860=108。 (2) 选哈明窗, 过渡带宽度1 kHz对应的数字频率为B=4000/20 000=/5, 精确过渡带满足: 6.6/N/5, 所以要求N6.65=33。 (3) 选哈明窗, 过渡带宽度1 kHz对应的数字频率为B=1000/5000
17、=/5, 精确过渡带满足: 6.6/N/5, 所以要求N6.65=33。 10 利用矩形窗、升余弦窗、改进升余弦窗和布莱克曼窗设计线性相位FIR低通滤波器。 要求希望逼近的理想低通滤波器通带截止频率c= /4 rad,N=21。 求出分别对应的单位脉冲响应。有限脉冲响应(FIR)数字滤波器的设计第章解解: (1) 希望逼近的理想低通滤波器频响函数Hd(ej)为jjde 0 | 4(e )0 | 4aH其中, a=(N1)/2=10。 (2) 由Hd(ej)求得hd(n): 4j 10jd/4sin(10)14( )eed2(10)nnh nn有限脉冲响应(FIR)数字滤波器的设计第章 (3)
18、加窗得到FIR滤波器单位脉冲响应h(n): 升余弦窗:Hn2( )0.5 1cos( )1NwnRnNHnd21sin(10)24( )( ) ( )1cos( )2(10)20nnhnh n w nRnn有限脉冲响应(FIR)数字滤波器的设计第章 改进升余弦窗:Hm2( )0.540.46 cos( )1NnwnRnNHmHm21sin(10)24( )( )( )0.540.46 cos( )p(10)20dnnhnh n wnRnn 布莱克曼窗:BldBl( )( )( )hnh n wn)(204cos08. 0202cos5 . 042. 0)10()10(4sin21nRnnnn有
19、限脉冲响应(FIR)数字滤波器的设计第章11 将技术要求改为设计线性相位高通滤波器, 重复题10。 解解: 方法一 将题10解答中的逼近理想低通滤波器(Hd(ej)、 hd(n)改为如下理想高通滤波器即可。 43| 00 | 43e)e (10jjdH有限脉冲响应(FIR)数字滤波器的设计第章d)e (21)(jddHnhdee de21j4/310j10j4/3m)10()10(43sin)10()10(sinnnnn3sin(10)4(10)(10)nnn有限脉冲响应(FIR)数字滤波器的设计第章上式中(n10)对应于全通滤波器。 上式说明, 高通滤波器的单位脉冲响应等于全通滤波器的单位脉
20、冲响应减去低通滤波器的单位脉冲响应。 仿照10题, 用矩形窗、 升余弦窗、 改进升余弦窗和布菜克曼窗对上面所求的hd(n)加窗即可。 计算与绘图程序与题10解中类同, 只要将其中的h(n)用本题的高通h(n)替换即可。 方法二 根据第7题(1)的证明结论设计。 (1) 先设计通带截止频率为/4的低通滤波器。 对四种窗函数所得FIR低通滤波器单位脉冲响应为题9解中的hR(n)、 hHn(n)、 hHm(n)和hBl(n)。 有限脉冲响应(FIR)数字滤波器的设计第章(2) 对低通滤波器单位脉冲响应乘以cosn可得到高通滤波器单位脉冲响应: 矩形窗: )()cos()10()10(4sin)cos
21、()()(21R1nRnnnnnhnh 升余弦窗: 2HnHn( )( )cos( )( 1)( )nh nhnnhn )()cos(202cos1)10(2)10(4sin21nRnnnn有限脉冲响应(FIR)数字滤波器的设计第章 改进升余弦窗: )cos()()(Hn3nnhnh)()cos(202cos46. 054. 0)10()10(4sin21nRnnnn 布莱克曼窗: )()cos(204cos08. 0202cos5 . 042. 0)10()10(4sin)(214nRnnnnnnh有限脉冲响应(FIR)数字滤波器的设计第章题12图12 利用窗函数(哈明窗)法设计一数字微分器
22、, 逼近题12图所示的理想微分器特性, 并绘出其幅频特性。 有限脉冲响应(FIR)数字滤波器的设计第章解解: (1) 由于连续信号存在微分, 而时域离散信号和数字信号的微分不存在, 因而本题要求设计的数字微分器是指用数字滤波器近似实现模拟微分器, 即用数字差分滤波器近似模拟微分器。 下面先推导理想差分器的频率响应函数。 设模拟微分器的输入和输出分别为x(t)和y(t), 即ttxktyd)(d)(令x(t)=ejt, 则y(t)=jket=jkx(t)对上式两边采样(时域离散化), 得到有限脉冲响应(FIR)数字滤波器的设计第章()j()jej ny nTkx nTkTjj(e )FT ()j
23、(e )kYy nTXT其中=T。 将x(nT)和y(nT)分别作为数字微分器的输入和输出序列, 并用Hd(ej)表示数字理想微分器的频率响应函数, 则)e (j)e ()e ()e (jjjdjXTkXHY即TkHj)e (jd有限脉冲响应(FIR)数字滤波器的设计第章jd|(e )| j|kHT根据题12图所给出的理想特性可知所以应取k=T, 所以Hd(ej)=j取群延时=(N1)/2, 则逼近频率响应函数应为 Hd(ej)=jej=ej(/2)有限脉冲响应(FIR)数字滤波器的设计第章deej21)(jjdnnhj()21ej()12 j() nnn )(sin2)(cos)(2)(12
24、12nnnn2cos()sin() 0()()nnnnn有限脉冲响应(FIR)数字滤波器的设计第章设FIR滤波器h(n)长度为N, 一般取=(N1)/2。 加窗后得到( )( ) ( )dh nh n w n2cos()sin()( ) 0()()nnw nnnn我们知道, 微分器的幅度响应随频率增大线性上升, 当频率=时达到最大值, 所以只有N为偶数的情况4才能满足全频带微分器的时域和频域要求。 因为N是偶数, =N/21/2=正整数1/2, 上式中第一项为0, 所以有限脉冲响应(FIR)数字滤波器的设计第章2sin()( )( ) ()nh nw nn 式就是用窗函数法设计的FIR数字微分
展开阅读全文