数学史课件精华版.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学史课件精华版.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学史 课件 精华版
- 资源描述:
-
1、数学史概论天狼 数学史选讲解读 第一讲第一讲 早期的算术与几何早期的算术与几何 第二讲第二讲 古希腊数学古希腊数学 第三讲第三讲 中国古代数学瑰宝中国古代数学瑰宝 第四讲第四讲 平面解析几何的产生平面解析几何的产生 第五讲第五讲 微积分的诞生微积分的诞生 第六讲第六讲 近代数学两巨星近代数学两巨星 第七讲第七讲 千古谜题千古谜题 第八讲第八讲 若干未决猜想的进展若干未决猜想的进展第一讲第一讲 早期早期的算术与几何的算术与几何 埃及和巴比伦的数学埃及和巴比伦的数学中国的早期数学中国的早期数学纸草书 纸草书是研究古埃及数学的主要来源 莱因德纸草书:最初发现于埃及底比斯古都废墟,1858年为苏格兰收
2、藏家莱因德购得,现藏于伦敦大英博物馆又称阿姆士纸草书,阿姆士在公元前1650年左右用僧侣文抄录了这部纸草书,据他加的前言知,所抄录的是一部已经流传了两个世纪的著作含84个数学问题 莫斯科纸草书:又称戈列尼雪夫纸草书,1893年由俄国贵族戈列尼雪夫在埃及购得,现存于莫斯科博物馆产生于公元前1850年前后,含有25个数学问题 古埃及的计算技术具有迭加的特征,乘除法运算,往往用连续加倍来完成由于方法较为繁复,古埃及算术难以发展到更高的水平 相对于算术,古埃及的几何具有更高的成就古代埃及人留下了许多气势宏伟的建筑,可以说明古埃及几何学的发达 埃及几何 埃及几何产生于土地测量,是一种实用几何 对面积、体
3、积的计算,他们给出了一些计算的法则,有准确的也有粗略的在莫斯科纸草书中有一个正四棱台体积的计算所用的公式,用现在的符号表示是 这是埃及几何中最出色的成就之一 22()3hVaabb巴比伦的数学 六十进制位值制记数法。 长于计算,编制了许多数表:乘法表、倒数表、平方表、立方表、平方根表、立方根表、甚至有特殊的指数(对数)表。 能解二次方程。中国的早期数学中国的早期数学 中国古代数学的起源可以上溯到公元前数千年史记中记载,夏禹治水,“左规矩,右准绳”这可以看作是中国古代几何学的起源在殷商甲骨文中已经使用了完整的十进制记数法,春秋战国时代又出现了十进位值制筹算记数法而战国时代的考工记、墨经、庄子等著
4、作中则探讨了许多抽象的数学概念,并记载了大量实用几何知识周易中的数学 周易是中国古代专讲卜筮的书,也可以看作是古人探索自然的朴素的哲学著作,约成书于殷商时期。周易由易经和易传两部分组成,先有易经,后有易传,两部分成书的时间相距七八百年。易经包括古代占卜的卦辞及爻辞,易传由系辞、说卦等十篇文章组成,是对易经中卦辞及爻辞的解释。 卜筮是原始人类共有的社会现象。中国古代常用龟甲和兽骨作为占卜工具,以决定事情的吉凶。筮,是按一定的规则得到特定的数字,并用它来预测事情的吉凶。周礼称:“凡国之大事,先筮后卜。”史记龟策列传则说:“王者决定诸疑,参与卜筮,断以蓍龟,不易之道也。” 筮的工具起初是竹棍(以后出
5、现的筹算数码则形成了中国古代用竹棍表示数字的传统),后来改用蓍草-一种有锯齿的草本植物。 在中国古代众多的儒、道典籍中,周易是包含数学内容最丰富的著作,因而对中国古代数学家产生了极大的影响。比如,刘徽在九章算术注的序中就写道:“昔伏羲氏始作八卦,以通神明之德,以类万物之情。作九九之数,以合六爻之变。”实际上就把数学方法与周易中的六爻、八卦等内容联系起来了。 八卦 乾 巽 离 - - 艮 - - - - - - - - - - - - - - 坤 - - 震 - - 坎 兑 - - - - 乾乾(000)坤坤(111)震震(011)艮艮(110)离离(010)坎坎(101)兑兑(001)巽巽(1
6、00) 计算机的发明与周易中的八卦有着十分密切的联系。众所周知,现代电子计算机最基本的数学基础是二进制数。二进制符号是德国数学家莱布尼茨(Leibniz,16461716)发明的。莱布尼茨于1679年撰写了二进制算术,阐述了二进制理论。莱布尼茨自称,他之所以会想到二进制数,就是因为受到了八卦符号的启发。他还说:“可以让我加入中国籍了吧”。 太极图 周易中的另一重要概念是太极。周易中写道:“易有太极,是生两仪,两仪生四象,四象生八卦。”太极即太一,这段话讲的是八卦产生的原理,也试图解释天地造分,化成万物的原理。后经宋代陈抟的发展,便有了太极图。 周易中另一个与数学相关的内容是“河图洛书”。周易中
7、有“河出图,洛出书,圣人则之”的记载。相传,上古伏羲氏时,洛阳东北孟津县境内的黄河中浮出龙马,背负河图,献给伏羲。伏羲依此而演成八卦,后为周易来源。又相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮洛书,献给大禹。大禹依此治水成功,遂划天下为九州。又依此定九章大法,治理社会,流传下来收入尚书中,名洪范。也就是说,在古人看来,八卦与九数实出于河图洛书河图洛书。 宋代陈抟所作的“洛书图”(九宫图)492357816 数的概念的产生数的概念的产生 数和形是数学最早的研究对象,考古研究发现,人类在5万年前就已经有了一些计数的方法。现代人的研究认为,人类数的概念的发展过程是,先有原始的数感,再形成一一对应
8、的计数方法,最后通过集合的等价关系建立抽象的数的概念。 记数符号的产生记数符号的产生 易系辞中载:“上古结绳而治,后世圣人易之以书契”。结绳记数,是指在绳子上打一个结表示一个数或一件事,绳结的多少,根据事物多少而定。而所谓的“书契”,就是刻划,“书”是划痕,“契”是刻痕。古人常常在各种动物骨头、金属、泥版上刻痕记数。如中国殷商时期常将文字刻划在牛的肩胛骨或龟甲上,故称甲骨文。 从刻划记数,人类很自然地过渡到刻出数的符号,并进而创造出第一批数字。古代中国、古埃及、巴比伦等民族,均在公元前5000年前后就有了记数符号。由于古人用手指作为计数的参照物十分方便,因而许多民族都不约而同地使用了十进制计数
9、法。当然也存在着少量的其它进位制,如5进制、12进制、16进制、20进制、60进制等。 公元前500年左右的战国时代,中国人创造了具有十进位值制特征的筹算数码。 筹算数字的摆放方法规定,个位用纵式,十位用横式,百位用纵式,千位用横式,万位又用纵式,如此纵横相间,以免发生误会。并规定用空位表示零。 到了13世纪,中国数学家又明确地用“ ”表示零,从而使中国记数法完全位值化。 拉普拉斯对十进位值制的评价 这是一个深远而又重要的思想,它今天看来如此简单,以致我们忽视了它的真正伟绩。但恰恰是它的简单性以及对一切计算都提供了极大的方便,才使我们的算术在一切有用的发明中列在首位;而当我们想到它竟逃过了古代
10、最伟大的两位人物阿基米德和阿波罗尼奥斯的天才思想的关注时,我们更感到这成就的伟大。第二讲第二讲 古希腊数学古希腊数学 希腊数学一般指从公元前600年至公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非洲北部的数学家们所创造的数学。 希腊早期文明中心在雅典;公元前338年希腊诸帮被马其顿控制,文明中心转到亚历山大城(埃及);公元前30年左右,罗马帝国完全控制希腊各国,文明中心转到罗马(意大利)。公元640年前后,阿拉伯民族征服东罗马,希腊文明落下帷幕。古希腊数学与哲学的交织 古希腊早期的自然科学往往是与哲学交织在一起的,古希腊的自然哲学乃是古代自然科学的一
11、种特殊形态,虽然有许多错误的东西,但也有不少合理的知识和包含着合理成分的猜测恩格斯说:“在希腊哲学的多种多样的形式中,差不多可以找到以后各种观点的胚胎、萌芽因此,如果理论自然科学想要追溯自己今天的一般原理发生和发展的历史,它就不得不回到希腊人那里去” 古希腊数学表现出很强的理性精神,追求哲学意义上的真理在公元前3、4百年的时候,他们的数学思想中就已经涉及到了无限性、连续性等深刻的概念 经过古埃及和巴比伦人长期积累数学知识的萌芽时期以后,古希腊人把数学推进到了一个崭新的时代古希腊数学不仅有十分辉煌的研究成果,而且提出了数学的基本观点,建立数学理论的方法,给以后的数学发展提供了坚实的基础 泰勒斯确
12、定了几条最早的几何定理 等腰三角形两底角相等 如果两个三角形有一边及这边上的两个角对应相等,那么这两个三角形全等 直角彼此相等 两条直线相交时,对顶角相等 圆的直径平分圆周 万物皆数 毕达哥拉斯学派认为世界万物都是数,最重要的数是1、2、3、4,而10则是理想的数;相应地,自然界由点(一元)、线(二元)、面(三元)和立体(四元)组成。他们认为自然界中的一切都服从于一定的比例数,天体的运动受数学关系的支配,形成天体的和谐。 理论算术(数论的雏形) 完全数、过剩数(盈数)、不足数(亏数)分别表现为其因数之和等于、大于、小于该数本身(规定因数包括1但不包括该数自身)。他们发现的前几个完全数是6=1+
13、2+3,28=1+2+4+7+14,496。 而220和284则是一对亲和数,因为前者的因数和等于284,后者的因数和等于220。 后来,在数学中寻找完全数就成为一项任务来研究.在前八千多正整数中只有4个完全数,6、28、496、8128,第五个完全数在1538年才找到:33550336,50年后发现第六个完全数:8589869056. .2005年发现第42个梅审素数,从而有了第42个完全数。几何成就 使几何学从经验上升到理论的关键性贡献应归功于毕达哥拉斯学派。他们基本上建立了所有的直线形理论,包括三角形全等定理、平行线理论、三角形的内角和定理、相似理论等。 正多边形和正多面体 毕达哥拉斯学
14、派掌握了正多边形和正多面体的一些性质。他们发现,同名正多边形覆盖平面的情况只有三种:正三角形、正方形、正六边形,而且这些正多边形个数之比为6:4:3,边数之比则为3:4:6。 毕达哥拉斯学派的另一项几何成就是正多面体作图,他们称正多面体为“宇宙形”。三维空间中仅有五种正多面体:正四面体、正六面体、正八面体、正十二面体、正二十面体。 正五边形与五角星 在五种正多面体中,除正十二面体外,每个正多面体的界面都是三角形或正方形,而正十二面体的界面则是正五边形。 正五边形作图与著名的“黄金分割”有关。五条对角线中每一条均以特殊的方式被对角线的交点分割。据说毕达哥拉斯学派就是以五角星作为自己学派的标志的。
15、 勾股数 毕达哥拉斯数: 一般形式之一:2221,22 ,221nnnnn222(, , ,xyzx y z两两互素)22222 ,( , ) 1, ,xab y ab z ab a b o abab 一 奇 一 偶勾股数 毕达哥拉斯数: 一般形式之一:2221,22 ,221nnnnn222(, , ,xyzx y z两两互素)22222 ,( , ) 1, ,xab y ab z ab a b o abab 一 奇 一 偶无理数的发现 毕达哥拉斯学派的信条是“万物皆数”,这里的数实际上是指正的有理数。传说,毕达哥拉斯学派成员希帕苏斯(Hippasus,公元前470年左右)发现了“不可公度比
16、”的现象,并在一次航海时公布了他的想法,结果被恐慌的毕达哥拉斯学派的其他成员抛进了大海。 项武义教授的一项研究认为,希帕苏斯首先发现的是正五边形边长与对角线长不可公度。第一次数学危机 不可公度比的发现使毕达哥拉斯学派对许多定理的证明都不能成立。 例:如果两个三角形的高相同,则它们的面积之比等于两底边之比。 ABCDE新比例论 100多年后,欧多克斯(Eudoxus,408-355)提出了“新比例论”,才用回避的方法暂时消除了“第一次危机”。 新比例定义:设A、B、C、D是任意四个量,其中A和B同类(即均为线段、角或面积),C和D同类,若对任意两个(正)整数m和n,mA与nB的大小关系,取决于m
17、C与nD的大小,则称A:B=C:D。 柏拉图学园 柏拉图(Plato,公元前427-347年)是当时最著名的希腊哲学家之一,虽然他不是数学家,但热心于数学科学,在柏拉图学园的门口挂着牌子:“不懂几何者免进”。值得注意的是,公元前四世纪的重要数学工作几乎都是柏拉图的朋友和学生做的。与柏拉图学园有联系的欧多克斯(Eudoxus,公元前408-355年)是这一时期最大的数学家,他在几何学上的研究成果,后来有些收入了欧几里得的几何原本。 亚里士多德 亚里士多德(Aristotle,公元前384-322年)是柏拉图的学生和同事,相处达20年之久,公元前335年成立了自己的学派,以后曾是马其顿王亚列山大的
18、老师。他是古典希腊时期最伟大的思想家,他的一些思想在数学史上影响很大。形式逻辑的建立 亚里士多德不象柏拉图那样只崇尚思辨,而是重视观察、分析和实验性的活动(如解剖)。亚里士多德是古希腊学者中最博学的人,是古代百科全书式的自然科学家,也是对近代自然科学影响最大的古代学者。他的著作甚多,在自然科学方面主要有物理学、论产生和消灭、天论、气象学、动物的历史、论动物的结构等。 形式逻辑的建立 亚里士多德创立了以三段论为中心的形式逻辑系统。他认为科学需要归纳,由特殊的事例过渡到一般命题,更需要用逻辑的推理由前提演绎出它的推论。亚里士多德的逻辑学著作后来被汇编为工具论,对阿基米德、欧几里得等人的研究有重要影
19、响。 古典希腊时期的希腊人已经掌握了大量初等几何性质,加上亚里士多德建立了形式逻辑,这些都为形成一门独立的初等几何的理论科学作好了充分的准备。亚历山大时期的数学 从公元前330年左右到公元前30年左右,希腊数学的中心从雅典转移到了埃及的亚历山大城。亚历山大帝国一分为三后,托勒密帝国统治希腊埃及,其首都亚历山大城成为希腊文化的中心。 托勒密一世曾经是亚里士多德的学生,他在执政后修建了缪斯艺术宫,这实际上是一个大博物馆,收藏的图书和手稿据说有5070万卷。当时的许多著名学者都被请到亚历山大里亚,用国家经费供养着。 这一时期思辩猜测已不盛行,观察、计算及定量分析的方法开始流行。天文学家阿利斯塔克(公
20、元前310230),通过对日、月、地的体积和相对距离的观测和计算作出了日心说的猜测。他通过测量角度推算出太阳直径比地球大六、七倍,并断定小天体(地球等)应围绕大天体(太阳)旋转。尽管他的计算很不精确,但思维方式是重要的。著名天文地理学家、数学家埃拉托色尼(约公元前284192)根据太阳在两个地方投影角之差,计算出地球的周长是24662英里(现在算出的通过地球南北极的周长为24819英里),他绘制了世界地图,并标明了经纬线以及寒带、热带和温带。 欧几里得与几何原本 欧几里得(约公元前330260),应托勒密一世之邀到亚历山大,成为亚历山大学派的奠基人。欧几里得系统地整理了以往的几何学成就,写出了
21、13卷原本,欧几里得的工作不仅为几何学的研究和教学提供了蓝本,而且对整个自然科学的发展有深远的影响。爱因斯坦说:“西方科学的发展是以两个伟大的成就为基础的,那就是:希腊哲学家发明形式逻辑体系(在欧几里得几何学中),以及通过系统的实验发现有可能找到因果关系(在文艺复兴时期)。” 公理化方法 公理化方法:从一些基本的概念和公理出发,利用纯逻辑推理的方法,把一门学科建立成演绎系统的方法。后来的许多著作都仿照这种格式写成,如牛顿的自然哲学的数学原理等。几何原本的影响 几何原本对后来数学思想有重要影响。其一:公理化思想;其二:几何直观与严格逻辑推理的结合使欧几里得几何长期被认为是最正宗的数学知识,笛卡儿
22、在发明了解析几何后仍坚持对每一个几何作图给出综合证明,牛顿在第一次公开他的微积分发明时也要对这一算法作出几何解释;其三:导致非欧几何的诞生。 阿基米德的数学成就 阿基米德(Archimedes,公元前287-212)出生于西西里岛的叙拉古,曾在亚历山大跟欧几里得的学生学习过,离开亚历山大后仍与那里的师友保持联系,他的许多成果都是通过与亚历山大学者的通信而保存下来的。因此,阿基米德通常被看成是亚历山大学派的成员。 阿基米德的著作很多,内容涉及数学、力学及天文学等。 “穷竭法”与“平衡法” 穷竭法是安蒂丰首先使用,并被古希腊数学家普遍用来证明面积和体积的方法。穷竭法可以用来严格证明已经猜想出来的命
23、题,但不能用来发现新的结果。 阿基米德发明了求面积和体积的“平衡法”,求出面积或体积后再用“穷竭法”加以证明。阿基米德“平衡法”与“穷竭法”的结合是严格证明与创造技巧相结合的典范。 球的体积 阿基米德用“平衡法”推导了球体积公式。刻在阿基米德墓碑上的几何图形代表了他所证明的一条数学定理:以球的直径为底和高的圆柱,其体积是球体积的3/2,其表面积是球面积的3/2。 阿基米德的“平衡法”,将需要求积的量分成一些微小单元,再与另一组微小单元进行比较,而后一组的总和比较容易计算。因此,“平衡法”实际上体现了近代积分法的基本思想,是阿基米德数学研究的最大功绩。但是,“平衡法”本身必须以极限论为基础,阿基
24、米德意识到了他的方法在严密性上的不足,所以他用平衡法求出一个面积或体积后,必再用穷竭法加以严格的证明。 用平衡法求球的体积 球切片体积 锥切片体积 柱切片体积 左力矩= 右力矩= 左力矩=4右力矩P球锥的切片x(2)xRxx2xx2RxN24 R xx2R xx用平衡法求球的体积 将球、圆锥、圆柱均完全分割成厚度为x的薄片,并将所有球与圆锥的薄片都挂到P点,圆柱薄片都留在原处。 左力矩和=(球体积+锥体积)2R 右力矩和=柱体积R (球体积+锥体积)2R=4柱体积R 球体积=2柱体积锥体积 与欧几里得相比,阿基米德可以说是一位应用数学家。在论浮体中论述了浮力原理、在论平面图形的平衡或其重心中论
25、述了杠杆原理。曾设计了一组复杂的滑车装置,使叙拉古国王亲手移动了一只巨大的三桅货船,他说:“给我一个支点,我可以移动地球”。在保卫叙拉古的战斗中发明了许多军械如石炮、火镜等。后被罗马士兵杀害,死时75岁。传说曾下令不要杀死阿基米德的罗马主将马塞吕斯事后特意为阿基米德建墓。 阿波罗尼奥斯与圆锥曲线论 阿波罗尼奥斯(Apollonius,公元前262-190)出生于小亚细亚(今土尔其一带),年轻时曾在亚历山大城跟随欧几里得的学生学习,后到小亚细亚西岸的帕加蒙王国居住与工作,晚年又回到亚历山大。 阿波罗尼奥斯的主要数学成就是在前人工作的基础上创立了相当完美的圆锥曲线理论,编著圆锥曲线论。 圆锥曲线论
展开阅读全文