数字信号处理课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数字信号处理课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 课件
- 资源描述:
-
1、与模拟滤波器相比的优点:1)精度和稳定度高;2)改变系统函数比较容易;3)不存在阻抗匹配问题;4)便于大规模集成;5) 可以实现多维滤波;与模拟滤波器的差别:1)数字滤波器主要处理离散时间信号和数字信号,模拟滤波器主要处理连续时间信号;2)数字滤波器可以用数字硬件构成的专用数字处理器和计算机实现,即硬件实现;也可以用程序的方法来实现,即软件实现;模拟滤波器则是用基本电路元件组成的电路网络系统来实现。数字滤波器 作用是对输入信号起到滤波;即DF是由差分方程描述的一类特殊的离散时间系统。 功能:把输入序列通过一定的运算变换成输出序列。不同的运算处理方法决定了滤波器的实现结构的不同。数字滤波器的特点
2、则:是其付氏变换。是系统的输出,是其付氏变换。是系统的输入,设)()()()(jwjweYnyeXnxh(n)x(n)y(n)作原理。这就是数字滤波器的工符合我们的要求,使滤波器输出选取表示)后变成其系统性能用经过滤波器看出:输入序列的频谱)()(),()()()()()()()()()(1jwjwjwjwjwjwjwjwjwmeHeXeHeHeXeHeXeHeXFmxmnhny则LSI系统的输出为:数字滤波器结构的表示方法 两 种表示方法:方框图表示法;流图表示法. 数字滤波器中,信号只有延时延时,乘以常数乘以常数和相加相加三种运算。 DF结构中有三个基本运算单元:加法器,单位延时,乘常数的
3、乘法器。1、方框图、流图表示法、方框图、流图表示法Z-1单位延时系数乘相加Z-1a方框图表示法:方框图表示法:信号流图表示法:信号流图表示法:a把上述三个基本单元互联,可构成不同数字网络或运算结构,也有方框图表示法和流图表示法。2.例子)() 2() 1()(021nxbnyanyany例:二阶数字滤波器:其方框图及流图结构如下:Z-1Z-1x(n)y(n)b0a1a2x(n)y(n)b0a1a2Z-1Z-1看出:可通过流图或方框图看出系统的运算步骤和运算结构。以后我们用流图来分析数字滤波器结构。DF网络结构或DF运算结构二个术语有微小的差别,但大抵一样,可以混用。数字滤波器的分类 滤波器的种
4、类很多,分类方法也不同。 1.从功能上分;低、带、高、带阻。 2.从实现方法上分:FIR、IIR 3.从设计方法上来分:Chebyshev(切比雪夫),Butterworth(巴特沃斯) 4.从处理信号分:经典滤波器、现代滤波器等等。1、经典滤波器 假定输入信号x(n)中的有用成分和希望去除的成分,各自占有不同的频带。当x(n)经过一个线性系统(即滤波器)后即可将欲去除的成分有效地去除。但如果信号和噪声的频谱相互重叠,那么经典滤波器将无能为力。 |X(ejw)|wwc有用无用wc|H(ejw)|Y(ejw)|wwc2.现代滤波器 它主要研究内容是从含有噪声的数据记录(又称时间序列)中估计出信号
5、的某些特征或信号本身。一旦信号被估计出,那么估计出的信号将比原信号会有高的信噪比。 现代滤波器把信号和噪声都视为随机信号,利用它们的统计特征(如自相关函数、功率谱等)导出一套最佳估值算法,然后用硬件或软件予以实现。 现代滤波器理论源于维纳在40年代及其以后的工作,这一类滤波器的代表为:维纳滤波器,此外,还有卡尔曼滤波器、线性预测器、自适应滤波器。本课程主要讲经典滤波器,外带一点自适应滤波器.3.模拟滤波器和数字滤波器 经典滤波器从功能上分又可分为:低通滤波器(LPAF/LPDF):Low pass analog filter带通滤波器(BPAF/BPDF):Bandpass analog fi
6、lter高通滤波器(HPAF/HPDF):High pass analog filter带阻滤波器(BSAF/BSDF):Bandstop analog filter即它们每一种又可分为:数字(Digital)和模拟(Analog)滤波器。4.模拟滤波器的理想幅频特性cc)( jHcc)( jHcc)( jH)( jH1c2c1c2cLPAFHPAFBPAFBSAF5.数字滤波器的理想幅频特性2c)(jweHLPDFHPDFBPDFBSDF.23.2.2)(jweH)(jweH)(jweH研究DF实现结构意义1.滤波器的基本特性(如有限长冲激响应FIR与无限长冲激响应IIR)决定了结构上有不同
7、的特点。2.不同结构所需的存储单元及乘法次数不同,前者影响复杂性,后者影响运算速度。3.有限精度(有限字长)实现情况下,不同运算结构的误差及稳定性不同。4.好的滤波器结构应该易于控制滤波器性能,适合于模块化实现,便于时分复用。IIR DF的基本网络结构IIR DF特点1.单位冲激响应h(n)是无限长的n2.系统函数H(z)在有限长Z平面(0|Z|)有极点存在。3.结构上存在输出到输入的反馈,也即结构上是递归型的。4.因果稳定的IIR滤波器其全部极点一定在单位圆内。IIR DF基本结构IIR DF类型有:直接型、级联型、并联型。直接型结构:直接I型、直接II型 (正准型、典范型)1、 IIR D
8、F系统函数及差分方程 一个N阶IIR DF有理的系统函数可能表示为:)()(1)10zXzYZaZbzHNiiiMiii(以下我们讨论M=M)只需N级延时单元,所需延时单元最少。故称典范型。(3)同直接I型一样,具有直接型实现的一般缺点。例子81434521148)21)(41(21148)2323223zzzzzzzzzzzzzH(已知IIR DF系统函数,画出直接I型、直接II型的结构流图。解:为了得到直接I、II型结构,必须将H(z)代为Z-1的有理式;x(n)8-411Z-1Z-1y(n)5/4-3/4Z-1Z-1Z-11/8Z-1-25/4Z-1Z-1Z-1-3/41/8-411-2
9、8y(n)x(n)注意反馈部分系数符号4、级联型结构(1)系统函数因式分解一个N阶系统函数可用它的零、极点来表示即系统函数的分子、分母进行因式分解:NiiMiiNiiiMiiizdzCAZaZbzH111110)1 ()1 (1)(可以展开为:或者是共轭复根或者是实根只有两种情况:和零、极点都是实数,的系数)()(,)(badcbazHiiii(2)系统函数系数分析11211*1111211*111111)1)(1 ()1 ()1)(1 ()1 ()1 ()1 ()(NiNiiiiMiMiiiiNiiMiizqzqzpzhzhzgAzdzcAzH:22:,2121则的二阶因子,并起来构成一个实
10、系数若将每一对共轭因子合;其中为复根。为实根;式中:MMMNNNqhpgiiii121121211121121211(1)(1)( )(1)(1)MMiiiiiNNiiiiig zzzHzAp zzz(3)基本二阶节的级联结构121121211121121211(1)(1)( )(1)(1)MMiiiiiNNiiiiig zzzHzAp zzz1212121121( )(1)MiiiiizzHzAzz()数二阶因子形式:就可以完全分解成实系那么,整个)(zH的二阶因子。即为二次项系数看作二阶因子的特例。及若把单实因子0),()1 ()1 (22111111iiMiiMiizpzg(4)滤波器的
11、基本二阶节 所以,滤波器就可以用若干个二阶网络级联起来构成。这每一个二阶网络也称滤波器的基本二阶节(即滤波器的二阶节)。一个基本二阶节的系统函数的形式为:121212121( )1iiiizzHzzz一般用直接II型(正准型、典范型表示)x(n)1ia2iZ-1Z-1a1i2iy(n)(5)用二阶节级联表示的滤波器系统整个滤波器则是多个二阶节级联MiizHAzH1)()(x(n)11a21Z-1Z-1a112112a22Z-1Z-1a12221Ma2MZ-1Z-1a1M2My(n).例子)1)(1 ()1)(1 (21221)21121131321zzzzzzzzzzzzH(设IIR数字滤波器
12、系统函数为:1Z-1111Z-1Z-111y(n)x(n)(6)级联结构的特点从级联结构中看出:它的每一个基本节只关系到滤波器的某一对极点和一对零点。调整1i,2i,只单独调整滤波器第I对零点,而不影响其它零点。同样,调整a1i,a2i,只单独调整滤波器第I对极点,而不影响其它极点。级联结构特点:(a)每个二阶节系数单独控制一对零点或一对极点,有利于控制频率响应。(b)分子分母中二阶因子配合成基本二阶节的方式,以及各二阶节的排列次序不同。5、并联型(1)系统函数的部分分式展开将系统函数展成部分分式的形式:用并联的方式实现DF。)时,当0(11111)(01122111011010ANMzdAz
13、dAzdAAzdAAZaZbzHNNNiiiNiiiMiii“相加”在电路中实现用并联。如果遇到某一系数为复数,那么一定有另一个为共轭复数,将它们合并为二阶实数的部分分式。(2)基本二阶节的并联结构212211110111011)(NkkkkkNiizzzzAiAzHAN1Z-1a1x(n)aN1a11Z-1Z-1A111y(n)A0.01a21a1N2a2N20N21N2其实现结构为:.(3)并联型基本二阶节结构2111101)(zzzzHi并联型的基本二阶节的形式:其中:要求分子比分母小一阶x(n)0a2Z-1Z-1a11y(n)(4)并联型特点(1)可以单独调整极点位置,但不能象级联那样
14、直接控制零点(因为只为各二阶节网络的零点,并非整个系统函数的零点)。(2)其误差最小。因为并联型各基本节的误差互不影响,所以比级联误差还少。若某一支路a1误差为1,但总系统的误差仍可达到少1。(因为分成a1,a2.支路).注意:(1)为什么二阶节是最基本的?因为二阶节是实系数,而一阶节一般为复系数。(2)统一用二阶节表示,保持结构上的一致性,有利于时分多路复用。(3)级联结构与并联结构的基本二阶节是不同的。(5)例子21113132114616121221)zzzzzzzzzzH(其并联结构为:x(n)Z-1Z-114y(n)161-61Z-16 转置定理 如果将原网络中所有支路方向加以反转,
15、支路增益保持不变,并将输入x(n) 和输出y(n)相互交换,则网络的系统函数不会改变。FIR DF的基本网络结构一、FIR DF的特点(1)系统的单位冲激响应h(n)在有限个n值处不为零。即h(n)是个有限长序列。(2)系统函数|H(z)|在|z|0处收敛,极点全部在z=0处(即FIR一定为稳定系统)(3)结构上主要是非递归结构,没有输出到输入反馈。但有些结构中(例如频率抽样结构)也包含有反馈的递归部分。二、FIR的系统函数及差分方程长度为N的单位冲激响应h(n)的系统函数为:100010)()()(, 01)()()NmiNiiiMiiiNnnmnxnhnyazazbzHZnhzH其差分方程
16、为:即无反馈情况中它实际上为一般(三、FIR滤波器实现基本结构1.FIR的横截型结构(直接型)2. FIR的级联型结构3. FIR的快速卷积型结构4. FIR的线性相位型结构5. FIR的频率抽样型结构1、FIR直接型结构(卷积型、横截型)(1)流图h(0)h(1)h(2)h(N-1)h(N)Z-1Z-1Z-1Z-1x(n)y(n)倒下h(0)h(1)h(N-1)h(N)Z-1Z-1Z-1Z-1y(n)x(n)(2)框图Z-1Z-1Z-1Z-1.x(n)h(0)h(1)h(2)h(N-1)y(n)2、级联型结构(1)流图 当需要控制滤波器的传输零点时,可将H(z)系统函数分解成二阶实系数因子的
17、形成:212211010)()()NiiiiNnnzzZnhzH(即可以由多个二阶节级联实现,每个二阶节用横截型结构实现。x(n)11Z-1Z-12112Z-1Z-1221N/2Z-1Z-12N/2y(n).01020N/21(2)级联型结构特点 由于这种结构所需的系数比直接型多,所需乘法运算也比直接型多,很少用。 由于这种结构的每一节控制一对零点,因而只能在需要控制传输零点时用。3、快速卷积型(1)原理 设FIR DF的单位冲激响应h(n)的非零值长度为M,输入x(n)的非零值长度为N。则输出y(n)=x(n)*h(n),且长度L=N+M-1 若将x(n)补零加长至L,补L-N个零点,将h(
18、n)补零加长至L,补L-M个零点。 这样进行L点圆周卷积,可代替x(n)*h(n)线卷积。其中: 而由圆卷积可用DFT和IDFT来计算,即可得到FIR的快速卷积结构。)()()()()(nxnhnxnhnyLnNNnnxnx010)()(LnMMnnhnh00)()((2)快速 卷积结构框图L点DFTL点DFTL点IDFTX(k)H(k)Y(k)x(n)h(n)()()()()(nxnhnxnhny102)()1)(LkknLjekHkXLny(此时,当N,M中够大时,比直接计算线性卷积快多了。4、线性相位FIR型结构(1)定义 所谓线性相位:是指滤波器产生的相移与输入信号频率成线性关系。(2
19、)线性相位FIR DF具有特性 h(n)是因果的,为实数,且满足对称性。即满足约束条件: h(n)=h(N-1-n)其中:h(n)为偶对称时,h(n)=h(N-1-n);h(n)为奇对称时,h(n)=-h(N-1-n);下面我们针对h(n)奇、偶进行讨论。(3)h(n)为偶偶、奇奇对称,N=偶数偶数时(a)FIR的线性相位的特性120)1120)1(120012) 1(1201212010)()1()() 1()()()()()NnnNnNnnNNnnNnnNNnnNNnnNnnNnnzznhznNhznhznNhznhznhznhznhzH(令n=N-1-n代入用n=n应用线性FIR特性:h
20、(n)=h(N-1-n)(b) 线性相位FIR的结构流图Z-1Z-1Z-1Z-1Z-1Z-1x(n)y(n)x(n-N/2+1)h(0) h(1)h(2)h(3)h(N/2-1).h(N-1)其中h(0)=h(N-1),h(1)=h(N-2).Z-1Z-1Z-1Z-1120)1)()NnnNnzznhzH(11111(4)h(n)为奇奇、偶偶对称,N=奇数奇数时(a)FIR的线性相位的特性当N=奇数时,1011121)20)( )1( )()2NnnNNnNnnH zh n zNh nzzhZ ((b) 线性相位FIR的结构流图Z-1Z-1Z-1Z-1Z-1Z-1x(n)y(n)h(0) h(
展开阅读全文