机泵基础培训PPT课件.ppt(85页)
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《机泵基础培训PPT课件.ppt(85页)》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 培训 PPT 课件
- 资源描述:
-
1、单击此处编辑母版标题样式机泵基础培训讲课:魏 刚净化一车间1/85机泵基础培训流体输送机械离心泵的基本结构和工作原理离心泵的安装、使用和维护离心泵常见故障与处理其它类型液体输送机械2/85一、流体输送机械1 . 1 . 概述概述流体输送是化工生产过程常见的单元操作之一。为了将流体从一处送到另一处,不论是提高其位置高度或增加其压强,还是克服管路的沿程阻力,都需要向流体施加外部机械能。流体输送机械就是向流体作功以提高其机械能的装置。目前流体输送机械为通用机械产品,在生产中如何选用既符合生产需要,比较经济合理的输送机械,同时在操作中做到安全可靠、高效率运行,除了熟知被输送流体的性质、工作条件外,还必
2、须了解各类输送机械的工作原理、结构和特性,以便进行正确地选择和合理使用。 3/851.1 输送机械的用途补充能量:将流体从一处输送到另一处提高压强:给流体加压造成设备真空:给流体减压为液体提供能量的输送机械称为泵,如离心泵、往复泵、旋涡泵等。为气体提供能量的输送机械称为风机或压缩机,如离心通风机、鼓风机等。4/851.2 输送机械应满足生产要求对生产上不同的要求采用不同的输送机械。原因:流体是多种多样的。水、油、腐蚀性流体等操作条件千差万别:输送量、效率、轴功率概括来说,输送机械应满足如下要求:(1)满足工艺上对流率和能量的要求。(2)结构简单,重量轻,投资费用低。(3)运行可靠,操作效率高,
3、日程操作费用低。(4)能适应被输送流体的特性,其中包括粘性、腐蚀性、毒性、可燃性、爆炸性、含固体杂质等。5/851.3输送机械的分类流体输送机械按照其工作原理分为:(1)动力式:利用高速旋转的叶轮使流体的机械能增加,典型的是离心式、轴流式输送机械。(2)容积式:利用活塞或转子运动改变工作室容积而对流体作功。典型的是往复式、旋转式输送机械。(3)其它类型:如利用另外一种流体作用的喷射式等。6/85二. 离心泵 液体输送机械的种类很多,按照工作原理的不同,分为离心泵、往复泵、旋转泵、旋涡泵等几种,其中,离心泵由于其适用范围广、操作方便,便于实现自动调节和控制而在化工生产中应用最为普遍。2.1 2.
4、1 离心泵的基本结构和工作原理离心泵的基本结构和工作原理2.1.1 2.1.1 离心泵离心泵的基本结构的基本结构离心泵主要由叶轮、泵壳等组成,由若干弯曲叶片组成的叶轮紧固在泵轴上安装在蜗壳形的泵壳内。泵壳中央的吸入口与吸入管路相连,侧旁的排出口与排出管路连接,如图。 2:14:227/852.1.2 离心泵的工作原理1 、当电机带动泵轴旋转时,叶轮亦随之高速旋转(转速一般为10003000r/min).叶轮旋转产生离心力,在离心力作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量, 使压力能和速度能均增加,并依靠此能量将液体输送到工作地点。2 、在液体被甩向叶轮
5、出口的同时,叶轮入口中心处形成了低压, 在吸液罐和叶轮中心处的液体之间就产生了压差,吸液罐中的液体在这个压差作用下,不断地经吸入管路及泵的吸入室进入叶轮中。8/85 若离心泵在启动前泵壳内不是充满液体而是空气,由于空气的密度远小于液体的密度,产生的离心力很小,因而叶轮中心区形成的低压不足以将贮槽内液体压入泵内,此时虽启动离心泵但不能够输送液体,这种现象称作气缚。表示离心泵无自吸能力。因此在启动泵前一定要使泵壳内充满液体。通常若吸入口位于贮槽液面上方时,在吸入管路中安装一单向底阀和滤网,以防止停泵时液体从泵内流出和吸入杂物。9/85离心泵的工作原理10/852.2 离心泵的主要部件以多级离心泵为
6、例,离心泵的主要部件由转子、叶轮、诱导轮、泵壳、吸人室、压水室、密 封装置、轴向力平衡装置和轴承等组成。1 1叶轮叶轮 叶轮本身被固定在泵轴上并随之旋转,将原动机输入的机械能传递给液体。是提高液体能量的核心部件。其型式有封闭式、半开式及开式三种。封闭式叶轮有单吸式及双吸式 两种。封闭式叶轮由前盖板、后盖板、叶片及轮毂组成。在前后盖板之间装有叶 片形成流道,液体由叶轮中心进入沿叶片间流道向轮缘排出。适于输送较清洁的流体,输送效率高, 电厂中的给水泵、凝结水泵、工业水泵等均采用封闭式叶轮。半开式叶轮只有后 盖板,而开式叶轮前后盖板均没有。半开式和开式叶轮适合于输送含杂质的液体,输送效率低。 如电厂
7、中的灰渣泵、泥浆泵。双吸式叶轮具有平衡轴向力和改善汽蚀性能的优点。 水泵叶片都采用后弯式,叶片数目在 612 片之间,叶片型式有圆柱形和扭曲形。11/85 离心泵的叶轮型式12/85闭式或半闭式叶轮在工作时,部分高压液体可由叶轮与泵壳间的缝隙漏入两侧,除影响效率外也使叶轮受到指向液体吸入口的轴向推力,导致叶轮向吸入口移动,严重时造成与泵壳的接触摩擦直至损坏。为平衡轴向推力,可在叶轮后侧板上钻一些平衡孔平衡孔,使漏入后侧的部分高压液体由平衡孔向低压区泄漏,减小两侧的压强差,但同时也使泵的效率有所下降。叶轮按其吸液方式的不同分为单吸式和双吸式两种,如图。双吸式叶轮可从两侧同时吸液,吸液能力大,而且
8、可基本上消除轴向推力消除轴向推力。13/851.泵壳泵壳亦称为蜗壳、泵体,构造为蜗牛壳形,包括吸入室和压液室吸入室和压液室。吸入室吸入室: :它的作用是使液体均匀地流进叶轮。压液室压液室: :它的作用是收集液体,并把它送入下级叶轮或导向排出管,与此同时降低液体的速度,使动能进一步变成压力能。压液室有蜗壳和导叶两种形式。这是因为随叶轮旋转方向,叶轮与泵壳间的通道截面逐渐扩大至出口时达到最大,使能量损失减少的同时实现了能量的转化。为了减少由叶轮外缘抛出的液体与泵壳的碰撞而引起能量损失,有时在叶轮与泵壳间还安装一固定不动而带有叶片的导轮,以引导液体的流动方向(见图)。14/85轴轴是传递机械能的重要
9、零件,原动机的扭矩通过它传给叶轮。泵轴是泵转子的主要零件,轴上装有叶轮、轴套、平衡盘等零件。泵轴靠两端轴承支承,在泵中作高速回转,因而泵轴要承载能力大、耐磨、耐腐蚀。泵轴的材料一般选用碳素钢或合金钢并经调质处理。轴承轴承是离心泵支承泵转子的部件,承受径向和轴向载荷,一般可分为滚动轴承和滑动轴承。2.轴、轴承15/85轴套是用来保护泵轴的,使之不受腐蚀和磨损。必要时,轴套可以更换。叶轮间距 离用轴套定位。 3.轴套16/854.离心泵轴封装置离心泵密封装置有密封环(又称口环、卡圈)和轴端密封两部分。4.1 4.1 密封环密封环 由于离心泵叶轮出口液体是高压,人口是低压,高压液体经叶轮 与泵体之间
10、的间隙泄漏而流回吸入处,所以需要装密封环。其作用是减小叶轮与 泵体之间的泄漏损失;另一方面可保护叶轮,避免与泵体摩擦。密封环型式有:平环式、角接式和迷宫式。一般泵使用前两者,而高压泵由于单级扬程高,为减少泄漏量,常用迷宫式。17/854.2 轴端密封(简称轴封)在泵轴伸出泵壳处,转轴和泵壳间存有间隙,在旋转的泵轴与泵壳之间的密封,称为轴端密封 。其作用是防止高压液体沿轴泄漏,或者外界空气以相反方向漏入。目前电厂各种泵采用的轴端密封装置有:填料密封、机械密封、迷宫式密封和浮动环密封。 4.2.1 4.2.1 填料密封装填料密封装置置:由填料函壳、软填料和填料压盖构成,软填料为浸油或涂石墨的石棉绳
11、,将其放入填料函与泵轴之间,将压盖压紧迫使它产生变形达到密封。18/85带水封环的填料密封结构它由填料箱 、水封环. 填料 、压盖 、 和压紧螺栓等组成。是目前普通离心泵最常用的一种轴封结构。填 料密封的效果可用拧紧压盖螺栓进行调整。拧紧程度以一秒内有一滴水漏出即可。 放置水封环,其目的是当泵内吸人口处于真空情况时,从水封环注入高于0.1 MPa 压力的水,以防止空气漏人泵内;再是当泵内水压高于 0.1MPa 时,可用高于泵 内压力 0.050.1MPa 的密封水注入,起到水封、减少泄漏作用,并起冷却和润 滑的作用。19/85泵在常温下工作时,一般用浸透石墨或黄油的棉编织物作填料。若温 度、压
12、力稍高,则用石棉等软纤维编织物作填料,编织物中加有浸渍石墨的铜、 铝、铅等金属丝。输送高温水时,还用巴氏合金、铝或铜等金属丝(其上浸有石墨、 矿物油等润滑剂)作为填料。近年来,英国研制种名为 Liongraf 填料,它是由石墨 和聚四氟乙烯细绳紧密交叠编成的,有相当好的润滑性和稳定性。安装方便,寿命长等特点。填料密封的最大 缺点是只适合低速,即使纯金属填料 也只适用于:圆周速度小于 25ms 的转轴。20/85由装在泵轴上随之转动的动环和固定在泵壳上的静环组成,两环形端面由弹簧力使之紧贴在一起达到密封目的。动环用硬质金属材料制成,静环一般用浸渍石墨或酚醛塑料等制成。机械密封的性能优良,使用寿命
13、长。当部件的加工精度要求高,安装技术要求比较严格,价格较高。用于输送酸、碱、盐、油等密封要求高的场合。 4.2.2 机械密封装置21/854.2.3 迷宫式密封 迷宫式密封在现代高速锅炉给水泵上也广泛应用,常用的有炭精迷宫密封及金属迷宫密封。其密封原理是:由轴套密封片与炭精环组成微小间 隙,流体通过间隙时压力降低,速度升高,但在密封片间的空间速度能转为压力 能,从而减少间隙两侧压差,达到密封的目的。为炭精迷宫密封。它是在轴 套表面加工出密封片,密封片与方形螺纹相似,炭精环则装在密封室中,为便于 组装,炭精环分成几个弧形段,用几个螺旋压簧定位,并用止动销防止转动。其 优点是当炭精环与密封片尖端之
14、间接触时,只是在炭精环内圈刻划出细沟纹,产生热量不大,并能很快散失,不致损坏密封片或转轴,泄漏量不大,而且,这种 密封间隙可以作得很小,一般约为 0.0250.05mm。金属迷宫密封它由一系列金属密封片与转轴组成微小间隙而达到密封。金属片一般为铜基合金。22/85近年来,螺旋密封得到较好的应用。螺旋密封是用 在转轴上车出与液体泄漏方向相反的螺旋型沟槽,在固 定 衬 套表 面再 车出与转轴沟 槽成 相交 的( 即反 向的 )沟 槽,达到减少泄漏的目的。23/854.2.4 浮动环密封 采用机械密封与迷宫式密封原理 结合起来的一种新型密封,称浮动环密封。浮动环密 封是靠轴(或轴套)与浮动环之间的狭
15、窄间隙产生很大 的水力阻力而实现密封的。由于浮动环与固定套的接 触端面上具有适当的比压,起到了接触端面的密封作 用。弹簧进步保证端面的良好接触。由轴(或轴套) 与浮动环间狭窄缝隙中的流体浮力来克服接触端面上的摩擦力,以保证浮动环相对于轴(或轴套)能自动调心,使得浮动环与轴不互相接触、磨损, 并长期保持非常小的间隙,一般径向间隙为 0.010.1mm,以提高密封效果。同时,也 适用于高温高压流体。我国 300MW 机组的给水泵有些就采用此种密封。24/85浮动环密封25/85单面进水的离心泵在运行时,由于作用于叶轮两侧的压力不等,产生了一个指向泵入口端并与轴平行的推力,这种推力就称为轴向推力。轴
16、向轴向推力。轴向推力将使叶轮和转轴一起向叶轮进口方向窜动,位移很大时造成动静部推力将使叶轮和转轴一起向叶轮进口方向窜动,位移很大时造成动静部件的碰撞和磨损,件的碰撞和磨损,所以要设法加以平衡。根据泵的结构不同,常采用以下几种方法平衡轴向推力。1、采用平衡孔和平衡管平衡轴向推力,单级泵采用,但不能完全平衡轴向推力,剩余的推力需借助于推力轴承来承担。2、采用双吸叶轮或单吸叶轮对称排列平衡轴向推力。3、采用平衡盘或平衡鼓平衡轴向推力,分段式多级泵多采用。6.轴向力的平衡装置26/85轴向力的产生另外,液体在进入叶轮后流动方向由轴向转为径向,由于流动方向的改变,产生了动 量,导致流体对叶轮产生一个反冲
17、力 F2。反冲力 F2 的方向与轴向力 F1 的方向相反。在泵正 常工作时,反冲力 F2 与轴向力 F1 相比数值很小,可以忽略不计。但在启动时,由于泵的正 常压力还未建立,所以反冲力 F2 的作用较为明显。启动时卧式泵转子后窜或立式泵转子上 窜就是这个原因。27/85平衡盘 如果平衡盘窜动位移很大,当向左边轴向推力移动时,则会使平衡盘与平衡座产生严重磨损。 28/85离心泵的结构图29/8530/85双吸水泵 1-泵体;2-泵壳;3-叶轮;4-轴;5-双吸密封环;6-键;7-轴套;8-填料套;9-填料;10-水封管;11-填料压盖;12-轴套螺母;13-双头螺栓;14-轴承体压盖;15-轴承
18、挡套;16-轴承体;17-螺钉;18-轴承端盖;19-轴承;20-轴承螺母;21-联轴器;22-水封31/852.3 离心泵的性能参数与特性曲线2.3.1 离心泵的主要性能参数为了正确地选择和使用离心泵,就必须熟悉其工作特性和它们之间的相互关系。反映离心泵工作特性的参数称为性能参数,主要有转速、流量、压头、轴功率和效率、气蚀余量等。离心泵一般由电机带动,因而转速是固定的,其性能参数通常在离心泵的铭牌或样本说明书中标明,以供选用时参考。1.1.流量流量 离心泵在单位时间内排出的液体体积,亦称为送液能力,用Q表示,单位为m3h。离心泵的流量与其结构、尺寸(叶轮直径和宽度)、转速、管路情况有关。 Q
19、 供方VS 需方QVS32/852.2.扬程扬程 指离心泵对单位重量的液体所提供的有效能量,又称为压头,用H表示,单位为m。泵的压头与泵的结构尺寸、转速、流量等有关。对于一定的泵和转速,压头与流量间有一定的关系。压头的值由实验测定:在泵的入口和出口间泵的入口和出口间列柏努利方程,以单位重量流体为基准:21f222b2121b1Hgpg2uZHgpg2uZ H 供方He=We/g 需方HHe33/853.3.效率效率 指泵轴对液体提供的有效功率与泵轴转动时所需功率之比,称为泵的总效率,用表示,无因次,其值恒小于100%。它的大小反映泵在工作时能量损失的大小,泵的效率与泵的大小、类型、制造精密程度
20、、工作条件等有关,由实验测定。离心泵的能量损失主要包括:(1)容积损失容积损失:由于泵的泄漏、液体的倒流等所造成,使得部分获得能量的高压液体返回去被重新作功而使排出量减少浪费的能量。容积损失用容积效率V表示。理论流量实际流量100QQ%100TeV34/85(2)机械损失机械损失:由于泵轴与轴承间、泵轴与填料间、叶轮盖板外表面与液体间的摩擦等机械原因引起的能量损失。机械损失用机械效率m表示。(3)水力损失水力损失:由于液体具有粘性,在泵壳内流动时与叶轮、泵壳产生碰撞、导致旋涡等引起的局部能量损失。水力损失用水力效率h表示。有效功率理论功率100NN%100eTm理论压头实际压头100HH%10
21、0Teh总效率: = vmh一般:小泵:= 5070 大泵:9035/854.4.轴功率轴功率 指泵轴转动时所需要的功率,亦即电机提供的功率,用N表示,单位kW。由于能量损失,轴功率必大于有效功率,即N=Ne/ 泵的轴功率与泵的结构、尺寸、流量、压头、转速等有关。 102HQNeN102HQ9.811000HQHgQNVgHeWsWeNeS轴功率:泵:有效功率:管路:36/852.3.2 离心泵的特性曲线在一定转速下,离心泵的压头、功率、效率随流量的变化关系称为特性曲线。它反映泵的基本性能的变化规律,可做为选泵和用泵的依据。各种型号离心泵的特性曲线不同,但都有共同的变化趋势。 (1)压头一般随
22、流量增大而下降(流量极小时可例外);(2)轴功率随流量增大而增大,流量为零时轴功率最小。因而启动离心泵时应关闭出口阀,使启动电流减小,保护电机,待运转正常后再开启阀门, 调节适当的流量。 (3)效率随流量增大而上升,达到一最大值后随流量增加而下降。说明在一定转速下,离心泵存在一最高效率点,称为设计点。离心泵在与最高效率点相对应的Q和H下工作最为经济,效率最高点对应的参数Q、H、N称为最佳工况参数(泵铭牌所标出即指此)。在选用离心泵时应使其在该点附近工作,一般规定一个工作范围,称为高效区,为最高效率的92%左右。37/852.3.3 离心泵性能的换算离心泵的特性曲线是在一定转速下,以常温清水进行
23、测定而得到的。使用时若输送液体的性质或其它条件与测定条件不同时,可导致泵的性能发生变化,这时就需进行相应的换算。1.1.液体密度的影响液体密度的影响离心泵的压头、流量均与液体的密度无关,故泵的效率亦不随而改变,但泵的轴功率随密度不同而变化,应重新进行计算。轴功率随密度增大而增大。 2.2.液体粘度的影响液体粘度的影响当被输送液体的粘度大于常温下清水的粘度时,由于叶轮、泵壳内流动阻力的增大,致使泵的压头、流量都要减小,效率下降,而轴功率增大。38/853.离心泵转速的影响当液体粘度不大且假设泵的效率不变,泵的转速变化小于20%时,泵的流量、压头、轴功率与转速的近似关系可按比例定律进行计算:4.4
24、.叶轮直径的影响叶轮直径的影响当转速不变而减小叶轮直径时,泵的流量、压头、轴功率与叶轮直径的关系可按切割定律进行计算(叶轮直径变化20%):32121221212121nnNN,nnHH,nnQQ32DDNN,DDHH,DDQQ39/852.4 离心泵的流量调节当选好的泵在管路提供的流量符要求或者生产任务变动时需进行流量调节,其实质是改变泵的工作点工作点。离心水泵的特性曲线和管路特性曲线的交点就是泵的工作点,因而改变其中之一或者同时改变即可实现流量的调节。改变阀门开度改变阀门开度通过改变管路特性曲线来改变泵的工作点。方法是在泵出口管路上装一调节阀,改变阀门开度,将改变管路的局部阻力,从而使管路
展开阅读全文