火灾模拟课件.ppt(135页)
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《火灾模拟课件.ppt(135页)》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 火灾 模拟 课件
- 资源描述:
-
1、李胜利李胜利工程系建筑防火教研室工程系建筑防火教研室火灾具有火灾具有随机性随机性和和确定性确定性的双重性规律。的双重性规律。随机性统计分析概率论、数理统计确定性试验模拟足尺寸、缩尺寸数值模拟质量守恒、动量守恒能量守恒、化学反应规律GHACw)(wA 开口面积,m2;比表面积,通常0.120.18m2/kg。H 开口高度,m;G 燃料重量,kg;C值值0.07时为燃料控制型火灾,时为燃料控制型火灾,C值值0.07时为通风控制型火灾。时为通风控制型火灾。 火灾按通风状况的分类火灾按通风状况的分类火灾模型火灾模型(公式、方程公式、方程)求解微分方程求解微分方程编制火灾模拟软件编制火灾模拟软件建立火灾
2、场景建立火灾场景计算、整理结果计算、整理结果火灾的模拟过程火灾的模拟过程模拟类型模拟类型模拟方法模拟方法模拟工具模拟工具经验模拟经验公式经验公式半物理模拟常微分方程组区域模型物理模拟偏微分方程组场模型模拟分类模拟分类火灾模拟的应用火灾模拟的应用防火设计防火设计火因调查火因调查灭火指挥灭火指挥 火灾模拟的过程火灾模拟的过程 场景文件的格式场景文件的格式 FDS的基本命令的基本命令 FDS的网格设置的网格设置 热边界条件热边界条件 FDS的热解模型的热解模型 燃烧模型燃烧模型 计算结果的输出计算结果的输出 通风通风 粒子及其应用粒子及其应用 FDS的控制命令的控制命令 全局参数的设置全局参数的设置
3、 并行计算并行计算 建模工具建模工具FDS历史历史2000,第一版,第一版2001,第二版,第二版2002,第三版,第三版2004,第四版,第四版2007,第五版,第五版FDS用途:用途:FDS开发的目的是解决消防工程的火灾问题,同时开发的目的是解决消防工程的火灾问题,同时它也是研究火灾动力学和燃烧的基本工具。它也是研究火灾动力学和燃烧的基本工具。FDS能能模拟下列现象:模拟下列现象:火灾生成热量和燃烧产物的低速输运过程火灾生成热量和燃烧产物的低速输运过程气体和固体表面的辐射及对流换热气体和固体表面的辐射及对流换热固体燃料的热解固体燃料的热解火灾蔓延和火焰传播火灾蔓延和火焰传播喷淋、感热探测器
4、和感烟探测器的启动喷淋、感热探测器和感烟探测器的启动喷淋系统的喷洒运动及水对火的抑制喷淋系统的喷洒运动及水对火的抑制FDS假设:假设:低速流动:小于低速流动:小于0.3马赫马赫矩形网格矩形网格指定热释放速率:此时计算精度指定热释放速率:此时计算精度80%90%燃烧模型:混合分数模型,适合于燃料控制型火灾,燃烧模型:混合分数模型,适合于燃料控制型火灾, 通风控制型火灾计算精度不高通风控制型火灾计算精度不高辐射模型:有限容积法求解辐射方程辐射模型:有限容积法求解辐射方程RTE,远距离辐,远距离辐 射计算精度较差射计算精度较差一、一、FDS火灾模拟的基本过程火灾模拟的基本过程前 处 理模拟计算后 处
5、 理NotepadFDSSmokeviewExcel、Origin场景文件结果文件场景文件(输入)应包含的信息场景文件(输入)应包含的信息计算区域及网格大小计算区域及网格大小建筑的几何形状建筑的几何形状火源设置火源设置边界条件边界条件输出控制输出控制二二 、场景文件的格式、场景文件的格式1.场景文件为纯文本文件,扩展名任意,FDS使用手册建议采用job_name.fds。2.场景文件由描述场景的一系列命令组成,命令由一个或多个参数组成,命令和参数均用大写字母。技术手册列出了常用的27个命令。3.每个命令由符号“&”开头,由符号“/”结尾。 每个命令可占一行或多行,命令的注释可使用汉字。4. 参
6、数的值可为整数、浮点数、字符串和逻辑值(.TRUE.和.FALSE.)6.场景文件由命令HEAD开头,命令TAIL结束。文件中的其他命令无先后次序之分。5.命令各参数及参数值间可用空格或逗号隔开。逗号输入时输入法应为英文状态。三、三、FDS的基本命令的基本命令1、HEAD命令命令(1)CHID参数:指定输出文件的名字,默认值为FDS模型文件的文件名。&HEAD CHID=test / (2)TITLE参数:用于描述场景,60字符以内,可以为汉字。&HEAD CHID=test, TITLE=教学示例场景文件/ 2、TAIL命令:表示文件的结尾,无参数。 无此命令时,光标应移至下一行。3、TIM
7、E命令(1)T_END参数设置模拟持续时间,单位为s,默认值1s。(2)若&TIME T_END=0/,FDS只执行场景的初始化工作,生成模型文件供Smokeview显示,不进行模拟计算。4、MESH命令:设置计算区域计算区域(doman)由矩形区域(mesh)构成,矩形区域剖分为多个矩形单元(cell)。354xyz(0,0,0)(5,3,4)(1)XB参数设置矩形区域范围。&MESH IJK=50,30,40, XB=0,5,0,3,0,4/注:采用MESH命令设置的区域为一封闭区域,并没有门窗等对外开口。(2)IJK参数设置x轴、y轴和z轴的网格数。&MESH IJK=40,30,30,
8、 XB=0,4,0,3,0,3/注:y轴和z轴网格的数值应为2l3m5n,具体如下:2 3 4 5 6 8 9 10 12 15 16 18 24 25 27 30 32 36 40 45 48 50 54 60 64 72 75 80 81 90 96 100 108 120 125128 135 144 150 160 162 180 192 200 216 225 240 243 250 256 270 288 300 320 324 360 375 384 400405 432 450 480 486 500 512 540 576 600 625 640 648 675 720 72
9、9 750 768 800 810 864 900 960 972 1000 10245、OBST命令:设置物体(1)XB参数设置物体的位置与尺寸&OBST XB=1,2,2,2.5,0,0.5/ &OBST XB=1,2,2,2.5,0,0.5,COLOR=RED/(2)COLOR或RGB参数设置物体的颜色&OBST XB=1,2,2,2.5,0,0.5, RGB=255,0,0 /(3)SURF_ID、 SURF_IDS、 SURF_ID6参数 设置物体的属性&OBST XB=2,4,1,4,0,2,SURF_ID=FIRE/&OBST XB=2,4,1,4,0,2 SURF_IDS=FI
10、RE,INERT,INERT /顶面侧面底面INERT:默认边界条件,固定温度20。思考:思考:INERT边界条件如何导热?边界条件如何导热?&OBST XB=2,4,1,4,0,2,SURF_ID6=FIRE,INERT,HOT ,COLD,BLOW,INERT/2x4x1y4y0z2z(4)TRANSPARENCY参数设置物体的透明度,该参数的范围:01。0表示完全透明,1不透明。该参数必须和颜色参数共同使用。&OBST XB=1,2,2,3,0,1 COLOR=BRICK TRANSPARENCY=0.5/注:物体的坐标要同网格相匹配。注:物体的坐标要同网格相匹配。&HEAD CHID=
11、test, TITLE=教学示例场景文件教学示例场景文件 /&MESH IJK=8,6,6, XB=0,4,0,3,0,3/&TIME T_END=0/模拟时间模拟时间&SURF ID=FIRE HRRPUA=1000/&OBST XB=1,2,1,2,0,0.25, SURF_ID=FIRE /&VENT XB=2,3,0,0,0,2,SURF_ID=OPEN/&TAIL /6、火源设置、火源设置SURF命令中的命令中的HRRPUA参数用于设置火源,参数用于设置火源,其单位为其单位为KW/m2。&SURF ID=FIRE HRRPUA=1000/&OBST XB =1,2,1.5,2.5,0
12、,0.5, SURF_IDS =FIRE,INERT,INERT/热释放速率受通风条件的影响热释放速率受通风条件的影响变化热释放速率的设置变化热释放速率的设置&SURF ID=FIRE,HRRPUA=1000, RAMP_Q=fireramp /&RAMP ID=fireramp, T= 0.0, F=0.0 /&RAMP ID=fireramp, T= 5.0, F=1.0 /2tQ7、MULT 命令:重复创建物体命令:重复创建物体(1)DX、DY、DZ参数参数 分别表示分别表示X、Y、Z轴的偏移量轴的偏移量(2)N_LOWER、N_UPPER参数参数 重复创建物体的个数重复创建物体的个数注
13、:需和注:需和OBST配合使用。配合使用。&MULT ID=stair,DX=0.1,DZ=0.1 N_LOWER=0 N_UPPER=15/&OBST XB=1.0,1.1,1,2,0.0,0.1 MULT_ID=stair COLOR=BLUE/(3)DXB参数:同时设置参数:同时设置3个坐标的个坐标的偏移量,请自行分析和练习。偏移量,请自行分析和练习。8、HOLE 命令:删除物体命令:删除物体OBST的一部分的一部分(1)XB参数表示需要删除的部分;参数表示需要删除的部分;&OBST XB=2.0,2.2,0,3,0.0,3.0,COLOR=GREEN/&HOLE XB=2.0,2.2,
14、0.3,1.3,0,2.1/技术手册建议:技术手册建议:&OBST XB=2.0 ,2.2 ,0,3,0.0,3.0,COLOR=GREEN/&HOLE XB=1.99,2.21,0.3,1.3,0,2.1/(2)HOLE命令只能用于内部物体,不能用于命令只能用于内部物体,不能用于MESH命令形成的外部边界。命令形成的外部边界。9、VENT 命令命令&VENT XB=2,3,0,0,0,2,SURF_ID=OPEN/(1)VENT表示一个平面,因此表示一个平面,因此XB中坐标有中坐标有一个轴是相同的。一个轴是相同的。(2)VENT必须设置在必须设置在OBST或或MESH语句设置语句设置的计算区
15、域外边界上。的计算区域外边界上。(4)若整个外表面要打开,可采用)若整个外表面要打开,可采用MB参数。参数。(3)表示自然通风时)表示自然通风时OPEN只能用于边界。只能用于边界。&MESH IJK=20,15,15, XB=0,4,0,3,0,3/&VENT XB=0,4,0,0,0,3,SURF_ID=OPEN/相当于:相当于:&VENT MB=YMIN/&VENT MB=XMIN, SURF_ID=OPEN/&VENT MB=XMAX,SURF_ID=OPEN/&VENT MB=YMIN, SURF_ID=OPEN/&VENT MB=YMAX,SURF_ID=OPEN/&VENT MB=
16、ZMAX,SURF_ID=OPEN/WFDS(5)VENT不局限于设置通风口,具体含义取决于不局限于设置通风口,具体含义取决于SURF_ID。&SURF ID=FIRE HRRPUA=1000/&OBST XB =1,2,1.5,2.5,0,0.5, SURF_IDS =FIRE,INERT,INERT/等同于等同于&SURF ID=FIRE HRRPUA=1000/&VENT XB=1,2,1.5,2.5,0,0,SURF_ID =FIRE/四、四、FDS的网格设置的网格设置1.影响计算时间的因素计算机性能(CPU、RAM等)火灾场景网格数量火灾荷载建筑布局模拟时间模拟计算机:双CPU(3.
17、6GHz),内存:4G局部加密28.31552.560档烟垂壁12.33002.448.5地下商场t2火1.99002410.8中庭火灾21.137010125.6地铁杨思站t2火29.33702191.4t2火189.272825184.3体育馆t2火117.29008184.3体育馆备备 注注运行时间运行时间/h模拟时间模拟时间/sHRRHRR/MW/MW网格数网格数/ /万万名名 称称地铁北京站2.网格与计算精度的关系ISO9505火灾试验火灾试验获得的HRR曲线试验装置FDS模型随着网格尺寸减小,热释放速率增加Back-Tray case随着网格尺寸减小,热释放速率减小.Back-Tr
18、ay case数值计算误差数值计算误差数值模型总是实际问题的简化和近似,因此数学数值模型总是实际问题的简化和近似,因此数学模型本身包含误差,称为模型本身包含误差,称为模型误差模型误差。数值方法准确解与模型的准确解之间的误差称为数值方法准确解与模型的准确解之间的误差称为截断误差截断误差。)()()()(2)()()()(00200000 xRxxnxfxxxfxxxfxfxfnnn !在网格节点上,离散方程的精确解与该点上相应微分在网格节点上,离散方程的精确解与该点上相应微分方程的精确解之间的误差,称为方程的精确解之间的误差,称为离散误差离散误差。 截断误差的阶数越高,网格尺寸越小,离散误差截断
19、误差的阶数越高,网格尺寸越小,离散误差越小。越小。由于计算机浮点数表示方法的限制,存在舍入误差。由于计算机浮点数表示方法的限制,存在舍入误差。 如:单精度数如:单精度数7位有效数字,双精度数位有效数字,双精度数16位。位。结论:网格越密,虽然离散误差越小,但由于计算次结论:网格越密,虽然离散误差越小,但由于计算次数剧增导致舍入误差增大,数剧增导致舍入误差增大,“吃掉吃掉”了离散误差的减了离散误差的减小小热释放速率计算结果收敛 Back-Tray case模拟结果与试验结果比较3.网格的设置方法不同输出变量对网格要求不同由粗到细逐步加密网格,直至两次结果变化不大网格大小具体设置方法为:52)(g
20、TcQDP164xD(建议取810)要设置网格较多时可局部加密网格(自学)8 . 929310141 . 1gTcp52)(gTcQDP10 xD 热边界条件热边界条件热边界条件的设置是一项最具挑战性的工作。热边界条件的设置是一项最具挑战性的工作。 Why?(1)材料的热物理性能对模拟结果非常敏感;材料的热物理性能对模拟结果非常敏感;(2)许多材料的热物理参数并不清楚;许多材料的热物理参数并不清楚;(3) 即使所有材料的热物性参数都知道,由于即使所有材料的热物性参数都知道,由于FDS模模型本身的算法及网格数的限制,也不可能模拟所有感型本身的算法及网格数的限制,也不可能模拟所有感兴趣的形象。兴趣
21、的形象。1.热物性参数热物性参数p 密度(密度(density)p导热系数(导热系数(conductivity)p比热(比热(specific heat )通过通过 MATL 命令设置热物性系数:命令设置热物性系数:&MATL ID = BRICK CONDUCTIVITY = 0.69 SPECIFIC_HEAT = 0.84 DENSITY = 1600. /CONDUCTIVITY 和和 SPECIFIC_HEAT 可以设置为温可以设置为温度的函数:度的函数:&MATL ID = BRICK CONDUCTIVITY_RAMP= c_ramp SPECIFIC_HEAT = 0.84 D
22、ENSITY = 1600. /&RAMP ID=c_ramp,T=20 ,F=1.00&RAMP ID=c_ramp,T=50 ,F=1.05&RAMP ID=c_ramp,T=100,F=1.21&RAMP ID=c_ramp,T=200,F=1.33&RAMP ID=c_ramp,T=500,F=1.332.物体的简单热边界条件物体的简单热边界条件&MATL ID = BRICK /&SURF ID = BRICK WALL MATL_ID = BRICK THICKNESS = 0.20 /&OBST XB=0.1, 5.0, 1.0, 1.2, 0.0, 1.0, SURF_ID=B
23、RICK WALL /3.物体的复杂热边界条件物体的复杂热边界条件固体的边界可由多层(固体的边界可由多层(layer)组成组成, 每层每层 可由多种可由多种材料(材料(material)组成组成.MATL(IL,IC) 参数参数:命令中命令中IL层的索引值层的索引值,由由1开始开始(最外边界最外边界);IC材料的索引值。材料的索引值。&MATL ID = BRICK /砖砖&MATL ID = MORTAR /砂浆砂浆&SURF ID = BRICK WALL MATL_ID (1,1)= MORTAR MATL_ID (2,1)= BRICK THICKNESS(1) = 0.02 THIC
24、KNESS(2)= 0.18/&OBST XB=0.1, 5.0, 1.0, 1.2, 0.0, 1.0, SURF_ID=BRICK WALL /若层只有一种材料组成若层只有一种材料组成: MATL_ID = MORTAR, BRICK THICKNESS = 0.02, 0.18/&MATL ID = SAND /砂子砂子&MATL ID = CEMENT /水泥石水泥石&SURF ID = BRICK WALL MATL_ID (1,1)= SAND MATL_ID (1,2)= CEMENT or : MATL_ID (1,1:2)= SAND, CEMENT MATL_MASS_FR
25、ACTION(1,1:2)=0.8,0.2 MATL_ID (2,1)= BRICK THICKNESS(1:2)= 0.02,0.18/4.物体背面(物体背面(back side)的边界条件)的边界条件&SURF MATL_ID = MORTAR, BRICK THICKNESS = 0.02, 0.18 BACKING=VOID /向大气层导热(默认值)向大气层导热(默认值)若墙体厚度小于等于网格尺寸:若墙体厚度小于等于网格尺寸:BACKING=EXPOSED/向对面房间导热向对面房间导热BACKING=INSULATED/不导热不导热 FDS的热解模型的热解模型固体的燃烧过程固体的燃烧过
展开阅读全文