对数线性模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《对数线性模型课件.ppt》由用户(三亚风情)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数 线性 模型 课件
- 资源描述:
-
1、对数线性回归多元社会统计分析3/18/20221 一、对数线性模型简介 1、对数线性模型基本思想 对数线性模型分析是把列联表资料的网格频数的对数表示为各变量及其交互效应的线性模型,然后运用类似方差分析的基本思想,以及逻辑变换来检验各变量及其交互效应的作用大小 3/18/20222区别区别 方法方法列联表列联表逻辑回归逻辑回归对数线性模型对数线性模型作用分析定类变量和定类变量之间有无关系分析尺度变量(也可引入类别变量)与二分类别变量之间的因果关系综合运用方差分析和逻辑回归中的建模方法,应用于纯粹定类变量之间,系统评价各变量间关系和交互作用大小的多元统计方法优缺点 不需要确定因变量和自变量。但是,
2、卡方检验对三维和三维以上列联表资料的分析有一定困难,即对混杂变量的控制较难 解决了对混杂变量的控制的问题,而且,它能将因变量与自变量的关系用模型表示出来,清晰易理解。 但是,当模型中自变量较多,特别是名义变量较多,或名义变量的类别较多时,分析自变量之间的交互效应就很繁杂,可能需要建立很多哑变量 可以直接分析各种类型的分类变量,对于名义变量,也不需要事先建立哑变量,可以直接分析变量的主效应和交互效应。对数线性模型不仅可以解决卡方分析中常遇到的高维列联表的“压缩”问题,又可以解决logistic回归分析中多个自变量的交互效应问题 3/18/202232、列联表的四种类型 双向无序列联表; 单向有序
3、列联表; 双向有序且属性不同的列联表; 双向有序且属性相同的列联表3/18/202243、列联表的优势 约束条件少 清晰 可以快速准确进行判断3/18/202254、列联表的劣势:对于多关系变量(两个以上)研究:不能被清晰解读 失去了对多变量之间的交互联系的分析 进行两变量间关联分析时缺乏统计控制 不能准确定量描述一个变量对另一个变量的作用幅度3/18/202265、对数线性模型:多维度列联表解决之道,以及模型自身特点 通过数学方法(方差分析+逻辑变换)来描述多元频数分布。 综合性:同时囊括多个变量于一个模型之中。 控制性:可以在控制其他变量的条件下研究两个分类变量之间的关联。 饱和性:将多元
4、频数分布分解成具体的各项主效应和各项交互效应,以及高阶效应,不会漏项。(饱和模型与不饱和模型)定量性:以发生比的形式来表示自变量的类型不同反映在因变量频数分布上的差异。 可检验性:不仅可以对所有参数估计进行检验,使抽样数据可以推论总体,且能够通过不同模型的统计检验结果,对备选模型进行筛选和评价,进而确定具有最大解释能力且最简单的模型。消除抽样波动所带来的明显的不规则性 3/18/202276、对数线性模型的缺点 对数线性模型更强调的是变量之间的交互效应,它不能直接将因变量用自变量的函数表示出来。 对数线性模型抽象复杂,特别是高维模型,不如线性回归模型易理解3/18/20228二、对数线性模型的
5、基本原理 1、与方差分析相关的 在多元方差分析中,以二元方差为例:每一个观测值yij=+Ai的效果+Bj的效果+(AB)ij交互作用+ij 3/18/202292、比数比 比数比是对数线性模型的基础,而比数比又是由比数计算而来。那么什么叫做比数呢?比数是一个事件发生的概率与其不发生概率之比,测量了一个事件发生的可能性。这个数值越高说明结果2相对于结果1发生的可能性就越高。 3/18/202210 Fij代表某模型fij的期望值,令ij 代表与单元格(i , j)有关的期望概率 上表可转化为3/18/2022113/18/202212 1=12/11 2=22/21 同理我们可以测量两个两个类别
6、间的比值,称作比数比。 = 1/ 2=2221/1221=F11 F22/ F12 F21 一个大于1的比数比意味着行变量和列变量的第二个(或者第一个)存在正相关;等于1无关;小于1负相关。 3/18/202213 比数比的不变性,不随1)总样本量2)行边缘分布3)列边缘分布的变化而变化。所以,只要关心比数比的估值,那么适用于简单随机样本的最大似然估计就可以被直接应用到分层样本中了。3/18/2022143、与逻辑变换有关的:对数线性模型的出现 令R表示行,C表示列,fij表示第i行第j列的观测频次。那么期望频次Fij被设定为一个乘积的函数 Fij=RiCjRCij 代表概率里面的总概率值1,
7、R 和C分别代表R和C的边缘效应,RC代表R与C的二维交互效应,而交互效应实质上测量的就是R与C之间的比数比,当RCij=1的时候就是我们熟悉的独立模型。 相乘形式的不好计算,我们将其取对数3/18/202215 上两式的数学变换使各种效应项相乘的关系被转换成相加的关系,使各项效应独立化了。 常数效应; A因素效应; B因素效应;(主效应) A、B两因素的交互效应;3/18/202216 主效应和多元交互列表涉及因素数量相等; 交互效应的总数则为所有因素各阶组合数之和。 对数线性模型有一个限制条件:模型中每一项效应的各类参数之和等于0;如果每项效应中只有一类的参数未知,那么可以由已知参数推算出
8、来。3/18/202217通过上组式子,我们可以计算出线性模型等式右侧的所有参数值。A因素效应是行平均值与总平均值之差B因素效应是列平均值与总平均值之差交互效应计算结果表示在除去所有其他分布效应之后两个因素之间的净关联。 3/18/202218 常数项只受样本规模和交互单元数的影响; 主效应项反映的是各因素内部类别频数分布的特征,是在总平均频数基础上的“补差”; 如果模型中所有交互效应都等于0,我们将会看到虽然每行(列)频数不同,但行(列)频数分布比例却是相同的,都等于原来分类变量的类别分布比例。3/18/202219 泊松分布 多项分布 乘积-多项分布 所以我们不能直接应用最小二乘法对模型、
9、总体、参数进行估计,但幸运的是,三个抽样模型下的极大似然估计是等同的。但是可以通过迭代再加权最小二乘法,可是运算起来比较繁琐。 4、分布3/18/2022205、估计 参数估计通俗的来讲:根据抽样结果来合理地、科学的猜测一下总体的参数大概是什么?或者是在什么范围?点估计就是用样本计算出来的一个参数来估计未知参数;区间估计就是通过样本计算出来一个范围来对位置参数进行估计。3/18/202221极大似然法与最小二乘法的区别于联系 最小二乘法所要解决的问题是:为了选出似的模型输出与系统输出尽可能接近的参数估计,用误差平方和即离差平方和的大小来表示接近程度。使离差平方和最小的参数值即为估计值。简单来说
展开阅读全文