书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型初中几何常见辅助线作法50种.docx

  • 上传人(卖家):四川天地人教育
  • 文档编号:2192841
  • 上传时间:2022-03-19
  • 格式:DOCX
  • 页数:27
  • 大小:2.21MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《初中几何常见辅助线作法50种.docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初中 几何 常见 辅助线 作法 50 下载 _各科综合_高中
    资源描述:

    1、初中常见辅助线作法任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。三角形部分1在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D、E为ABC内两点,求证:ABACBDDECE. 证法(一):将DE向两边延长,分别交AB、AC于M、N 在AMN中, AM ANMDDENE 在BDM中,MBMDBD 在CEN中,CNNECE 得AMANMB

    2、MDCNNEMDDENEBDCEABACBDDECE证法(二)延长BD交AC于F,延长CE交BF于G,在ABF和GFC和GDE中有,ABAFBDDGGFGFFCGECEDGGEDE有ABAFGFFCDGGEBDDGGFGECEDEABACBDDECE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为ABC内任一点, 求证:(ABBCAC)PAPBPCABBCAC2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角

    3、形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D为ABC内任一点,求证:BDCBAC证法(一):延长BD交AC于E,BDC是EDC 的外角,BDCDEC同理:DECBACBDCBAC证法(二):连结AD,并延长交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCBAC3.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD为ABC的中线且1 = 2,3 = 4,求证:BECFEF证明:在DA上截取DN = DB,连结NE、NF,则DN = DC 在BDE和NDE中,DN = DB1 = 2ED = EDBDE

    4、NDEBE = NE同理可证:CF = NF在EFN中,ENFNEFBECFEF4. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD为ABC的中线,且1 = 2,3 = 4,求证:BECFEF证明:延长ED到M,使DM = DE,连结CM、FMBDE和CDM中, BD = CD1 = 5ED = MDBDECDMCM = BE又1 = 2,3 = 4 123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF = DFEDFMDFEF = MF在CMF中,CFCM MFBEC

    5、FEF(此题也可加倍FD,证法同上) 5. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD为ABC的中线,求证:ABAC2AD证明:延长AD至E,使DE = AD,连结BEAD为ABC的中线BD = CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC2AD6.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:abab = cab = cd例:已知,如图,在ABC中,ABA

    6、C,1 = 2,P为AD上任一点,求证:ABACPBPC证明:截长法:在AB上截取AN = AC,连结PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC补短法:延长AC至M,使AM = AB,连结PM在ABP和AMP中AB = AM 1 = 2AP = APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC练习:1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分线,并且它们交于点O求证:AC = AECD2.已知,如图,ABCD1 = 2 ,3 = 4. 求证:BC = ABCD 7.

    7、条件不足时延长已知边构造三角形.例:已知AC = BD,ADAC于A,BCBD于B求证:AD = BC证明:分别延长DA、CB交于点EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC8.连接四边形的对角线,把四边形问题转化成三角形来解决问题.例:已知,如图,ABCD,ADBC 求证:AB = CD 证明:连结AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB = CD练习:已知,如图,AB =

    8、 DC,AD = BC,DE = BF,求证:BE = DF9.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“垂直加平分出等腰三角形”.例:已知,如图,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延长线于E求证:BD = 2CE证明:分别延长BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE = FE =CFBAC = 90o , BECFBAC = CAF = 90o 1BDA = 90o1BFC = 90oBDA = BFC在ABD和ACF中BAC = CAFBDA =

    9、BFCAB = ACABDACFBD = CFBD = 2CE练习:已知,如图,ACB = 3B,1 =2,CDAD于D,求证:ABAC = 2CD10.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,求证:A = D证明:(连结BC,过程略)11.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.例:已知,如图,AB = DC,A = D 求证:ABC = DCB 证明:分别取AD、BC中点N、M,连结NB、NM、NC(过程略)12.有角平分线时,常过角平分线上的点向角两边做垂线,利用角

    10、平分线上的点到角两边距离相等证题.例:已知,如图,1 = 2 ,P为BN上一点,且PDBC于D,ABBC = 2BD,求证:BAPBCP = 180o证明:过P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE = CDPEBE,PDBCPEB =PDC = 90o在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o练习:1.已知,如图,PA、PC分别是A

    11、BC外角MAC与NCA的平分线,它们交于P,PDBM于M,PFBN于F,求证:BP为MBN的平分线2. 已知,如图,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分线,D是AC上一点,若CBD = 20o,求CED的度数。13.有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BDAC于D,求证:BAC = 2DBC证明:(方法一)作BAC的平分线AE,交BC于E,则1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)过A作AEBC于E(过程

    12、略)(方法三)取BC中点E,连结AE(过程略)有底边中点时,常作底边中线例:已知,如图,ABC中,AB = AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF证明:连结AD.D为BC中点,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EFBC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBC

    13、AACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法一)过D作DNAE,交BC于N,则DNB = ACB,NDE = E,AB = AC,B = ACBB =DNBBD = DN又BD = CE DN = EC在DNF和ECF中1 = 2NDF =EDN = EC DNF

    14、ECFDF = EF(证法二)过E作EMAB交BC延长线于M,则EMB =B(过程略)常过一腰上的某一已知点做底的平行线例:已知,如图,ABC中,AB =AC,E在AC上,D在BA延长线上,且AD = AE,连结DE求证:DEBC证明:(证法一)过点E作EFBC交AB于F,则AFE =BAEF =CAB = ACB =CAFE =AEFAD = AEAED =ADE又AFEAEFAEDADE = 180o2AEF2AED = 90o 即FED = 90o DEFE又EFBCDEBC(证法二)过点D作DNBC交CA的延长线于N,(过程略)(证法三)过点A作AMBC交DE于M,(过程略)常将等腰三

    15、角形转化成特殊的等腰三角形-等边三角形例:已知,如图,ABC中,AB = AC,BAC = 80o ,P为形内一点,若PBC = 10o PCB = 30o 求PAB的度数.解法一:以AB为一边作等边三角形,连结CE则BAE =ABE = 60oAE = AB = BEAB = ACAE = AC ABC =ACBAEC =ACEEAC =BACBAE = 80o 60o = 20oACE = (180oEAC)= 80oACB= (180oBAC)= 50oBCE =ACEACB = 80o50o = 30oPCB = 30oPCB = BCEABC =ACB = 50o, ABE = 60

    16、oEBC =ABEABC = 60o50o =10oPBC = 10oPBC = EBC在PBC和EBC中PBC = EBCBC = BCPCB = BCEPBCEBCBP = BEAB = BEAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP)= 70o解法二:以AC为一边作等边三角形,证法同一。解法三:以BC为一边作等边三角形BCE,连结AE,则EB = EC = BC,BEC =EBC = 60oEB = ECE在BC的中垂线上同理A在BC的中垂线上EA所在的直线是BC的中垂线EABCAEB = BEC = 30o =PCB由

    17、解法一知:ABC = 50oABE = EBCABC = 10o =PBCABE =PBC,BE = BC,AEB =PCBABEPBCAB = BPBAP =BPAABP =ABCPBC = 50o10o = 40oPAB = (180oABP) = (180o40o)= 70o14.有二倍角时常用的辅助线构造等腰三角形使二倍角是等腰三角形的顶角的外角例:已知,如图,在ABC中,1 = 2,ABC = 2C,求证:ABBD = AC证明:延长AB到E,使BE = BD,连结DE则BED = BDEABD =EBDEABC =2EABC = 2CE = C 在AED和ACD中E = C1 =

    18、2AD = ADAEDACDAC = AEAE = ABBEAC = ABBE即ABBD = AC平分二倍角例:已知,如图,在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作BAC的平分线AE交BC于E,则BAE = CAE = DBCBDACCBD C = 90oCAEC= 90o AEC= 180oCAEC= 90oAEBCABCBAE = 90oCAEC= 90oBAE = CAEABC = ACB加倍小角例:已知,如图,在ABC中,BDAC于D,BAC = 2DBC求证:ABC = ACB证明:作FBD =DBC,BF交AC于F(过程略)15.有垂直平分线时

    19、常把垂直平分线上的点与线段两端点连结起来.例:已知,如图,ABC中,AB = AC,BAC = 120o,EF为AB的垂直平分线,EF交BC于F,交AB于E求证:BF =FC证明:连结AF,则AF = BFB =FABAB = ACB =CBAC = 120oB =CBAC =(180oBAC) = 30oFAB = 30oFAC =BACFAB = 120o30o =90o又C = 30oAF = FCBF =FC练习:已知,如图,在ABC中,CAB的平分线AD与BC的垂直平分线DE交于点D,DMAB于M,DNAC延长线于N求证:BM = CN16. 有垂直时常构造垂直平分线.例:已知,如图

    20、,在ABC中,B =2C,ADBC于D求证:CD = ABBD证明:(一)在CD上截取DE = DB,连结AE,则AB = AEB =AEBB = 2CAEB = 2C又AEB = CEACC =EACAE = CE又CD = DECECD = BDAB(二)延长CB到F,使DF = DC,连结AF则AF =AC(过程略)17.有中点时常构造垂直平分线.例:已知,如图,在ABC中,BC = 2AB, ABC = 2C,BD = CD求证:ABC为直角三角形证明:过D作DEBC,交AC于E,连结BE,则BE = CE,C =EBCABC = 2CABE =EBCBC = 2AB,BD = CDB

    21、D = AB在ABE和DBE中AB = BDABE =EBCBE = BEABEDBEBAE = BDEBDE = 90oBAE = 90o即ABC为直角三角形18.当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题.例:已知,如图,在ABC中,A = 90o,DE为BC的垂直平分线求证:BE2AE2 = AC2证明:连结CE,则BE = CEA = 90o AE2AC2 = EC2AE2AC2= BE2BE2AE2 = AC2练习:已知,如图,在ABC中,BAC = 90o,AB = AC,P为BC上一点求证:PB2PC2= 2PA219.条件中出现特殊角时常作高把特殊角放在直角三

    22、角形中.例:已知,如图,在ABC中,B = 45o,C = 30o,AB =,求AC的长. 解:过A作ADBC于DBBAD = 90o,B = 45o,B = BAD = 45o,AD = BDAB2 = AD2BD2,AB =AD = 1C = 30o,ADBCAC = 2AD = 2四边形部分20.有平行线时常作平行线构造平行四边形例:已知,如图,RtABC,ACB = 90o,CDAB于D,AE平分CAB交CD于F,过F作FHAB交BC于H求证:CE = BH证明:过F作FPBC交AB于P,则四边形FPBH为平行四边形B =FPA,BH = FPACB = 90o,CDAB5CAB =

    23、45o,BCAB = 90o5 =B5 =FPA又1 =2,AF = AFCAFPAFCF = FP4 =15,3 =2B3 =4CF = CECE = BH练习:已知,如图,ABEFGH,BE = GC求证:AB = EFGH21.有以平行四边形一边中点为端点的线段时常延长此线段. 例:已知,如图,在ABCD中,AB = 2BC,M为AB中点求证:CMDM证明:延长DM、CB交于N四边形ABCD为平行四边形AD = BC,ADBCA = NBA ADN =N又AM = BMAMDBMNAD = BNBN = BCAB = 2BC,AM = BMBM = BC = BN1 =2,3 =N123

    24、N = 180o,13 = 90oCMDM22.有垂直时可作垂线构造矩形或平行线.例:已知,如图,E为矩形ABCD的边AD上一点,且BE = ED,P为对角线BD上一点,PFBE于F,PGAD于G求证:PFPG = AB证明:证法一:过P作PHAB于H,则四边形AHPG为矩形AH = GP PHADADB =HPBBE = DEEBD = ADBHPB =EBD又PFB =BHP = 90oPFBBHPHB = FPAHHB = PGPF即AB = PGPF证法二:延长GP交BC于N,则四边形ABNG为矩形,(证明略)23.直角三角形常用辅助线方法:作斜边上的高例:已知,如图,若从矩形ABCD

    25、的顶点C作对角线BD的垂线与BAD的平分线交于点E求证:AC = CE证明:过A作AFBD,垂足为F,则AFEGFAE = AEG四边形ABCD为矩形BAD = 90o OA = ODBDA =CADAFBDABDADB = ABDBAF = 90oBAF =ADB =CADAE为BAD的平分线BAE =DAEBAEBAF =DAEDAC即FAE =CAECAE =AEGAC = EC作斜边中线,当有下列情况时常作斜边中线:有斜边中点时例:已知,如图,AD、BE是ABC的高, F是DE的中点,G是AB的中点求证:GFDE证明:连结GE、GDAD、BE是ABC的高,G是AB的中点GE = AB,

    26、GD = ABGE = GDF是DE的中点GFDE有和斜边倍分关系的线段时例:已知,如图,在ABC中,D是BC延长线上一点,且DABA于A,AC = BD求证:ACB = 2B证明:取BD中点E,连结AE,则AE = BE = BD1 =BAC = BDAC = AEACB =2 2 =1B2 = 2BACB = 2B24.有正方形一边中点时常取另一边中点.例:已知,如图,正方形ABCD中,M为AB的中点,MNMD,BN平分CBE并交MN于N求证:MD = MN证明:取AD的中点P,连结PM,则DP = PA =AD四边形ABCD为正方形AD = AB, A =ABC = 90o1AMD =

    27、90o,又DMMN2AMD = 90o1 =2M为AB中点AM = MB = ABDP = MB AP = AMAPM =AMP = 45oDPM =135oBN平分CBECBN = 45oMBN =MBCCBN = 90o45o= 135o即DPM =MBNDPMMBNDM = MN注意:把M改为AB上任一点,其它条件不变,结论仍然成立。练习:已知,Q为正方形ABCD的CD边的中点,P为CQ上一点,且AP = PCBC求证:BAP = 2QAD25.利用正方形进行旋转变换 旋转变换就是当图形具有邻边相等这一特征时,可以把图形的某部分绕相等邻边的公共端点旋转到另一位置的引辅助线方法. 旋转变换

    28、主要用途是把分散元素通过旋转集中起来,从而为证题创造必要的条件. 旋转变换经常用于等腰三角形、等边三角形及正方形中.例:已知,如图,在ABC中,AB = AC,BAC = 90o,D为BC边上任一点求证:2AD2 = BD2CD2证明:把ABD绕点A逆时针旋转90o得ACEBD = CE B = ACEBAC = 90oDAE = 90oDE2 = AD2AE2 = 2AD2BACB = 90oDCE = 90oCD2CE2 = DE22AD2 = BD2CD2 注意:把ADC绕点A顺时针旋转90o 也可,方法同上。练习:已知,如图,在正方形ABCD中,E为AD上一点,BF平分CBE交CD于F

    29、求证:BE = CFAE26.有以正方形一边中点为端点的线段时,常把这条线段延长,构造全等三角形.例:如图,在正方形ABCD中,E、F分别是CD、DA的中点,BE与CF交于P点求证:AP = AB 证明:延长CF交BA的延长线于K四边形ABCD为正方形BC = AB = CD = DA BCD =D =BAD = 90o E、F分别是CD、DA的中点CE = CD DF = AF = ADCE = DFBCECDFCBE =DCF BCFDCF = 90o BCFCBE = 90oBECF又D =DAK = 90o DF = AF 1 =2CDFKAFCD = KABA = KA又BECFAP

    30、 = AB练习:如图,在正方形ABCD中,Q在CD上,且DQ = QC,P在BC上,且AP = CDCP求证:AQ平分DAP27.从梯形的一个顶点作一腰的平行线,把梯形分成一个平行四边形和一个三角形.例:已知,如图,等腰梯形ABCD中,ADBC,AD = 3,AB = 4,BC = 7求B的度数解:过A作AECD交BC于E,则四边形AECD为平行四边形AD = EC, CD = AEAB = CD = 4, AD = 3, BC = 7 BE = AE = AB = 4ABE为等边三角形B = 60o 28.从梯形同一底的两端作另一底所在直线的垂线,把梯形转化成一个矩形和两个三角形.例:已知,

    31、如图,在梯形ABCD中,ADBC,AB = AC,BAC = 90o,BD = BC,BD交AC于O求证:CO = CD证明:过A、D分别作AEBC,DFBC,垂足分别为E、F则四边形AEFD为矩形AE = DFAB = AC,AEBC,BAC = 90o,AE = BE = CE =BC,ACB = 45o BC = BDAE = DF = BD又DFBCDBC = 30oBD = BCBDC =BCD = (180oDBC)= 75oDOC =DBCACB = 30o45o = 75oBDC =DOCCO = CD29.从梯形的一个顶点作一条对角线的平行线,把梯形转化成平行四边形和三角形.

    32、例:已知,如图,等腰梯形ABCD中,ADBC,ACBD,ADBC = 10,DEBC于E求DE的长.解:过D作DFAC,交BC的延长线于F,则四边形ACFD为平行四边形AC = DF, AD = CF四边形ABCD为等腰梯形AC = DBBD = FDDEBC BE = EF =BF=(BCCF) =(BCAD)=10 = 5ACDF,BDACBDDFBE = FEDE = BE = EF = BF = 5答:DE的长为5.30.延长梯形两腰使它们交于一点,把梯形转化成三角形.例:已知,如图,在四边形ABCD中,有AB = DC,B =C,ADBC求证:四边形ABCD等腰梯形证明:延长BA、C

    33、D,它们交于点EB =CEB = EC又AB = DCAE =DE EAD =EDAEEADEDA = 180o BCE = 180o EAD =BADBCADBC,B =C四边形ABCD等腰梯形(此题还可以过一顶点作AB或CD的平行线;也可以过A、D作BC的垂线)31.有梯形一腰中点时,常过此中点作另一腰的平行线,把梯形转化成平行四边形.例:已知,如图,梯形ABCD中,ADBC,E为CD中点,EFAB于F求证:S梯形ABCD = EFAB证明:过E作MNAB,交AD的延长线于M,交BC于N,则四边形ABNM为平行四边形EFABSABNM = ABEFADBCM =MNC 又DE = CE 1

    34、 =2CENDEMSCEN = SDEMS梯形ABCD = S五边形ABNEDSCEN = S五边形ABNEDSDEM = S梯形ABCD = EFAB32. 有梯形一腰中点时,也常把一底的端点与中点连结并延长与另一底的延长线相交,把梯形转换成三角形.例:已知,如图,直角梯形ABCD中,ADBC,ABAD于A,DE = EC = BC求证:AEC = 3DAE证明:连结BE并延长交AD的延长线于NADBC3 =N又1 =2 ED = ECDENCEBBE = EN DN = BCABADAE = EN = BEN =DAEAEB =NDAE = 2DAEDE = BC BC = DNDE =

    35、DNN =11 =2 N =DAE2 =DAEAEB2 = 2DAEDAE即AEC = 3DAE33.梯形有底的中点时,常过中点做两腰的平行线.例:已知,如图,梯形ABCD中,ADBC,ADBC,E、F分别是AD、BC的中点,且EFBC求证:B =C证明:过E作EMAB, ENCD,交BC于M、N,则得ABME,NCDEAE = BM,AB= EM,DE = CN,CD = NEAE = DEBM = CN又BF = CFFM = FN又EFBCEM = EN1 =2ABEM, CDEN1 =B 2 =CB = C34.有线段中点时,常过中点作平行线,利用平行线等分线段定理的推论证题.例:已知

    36、:ABC中,D为AB中点,E为BC的三等分点,(BECE)AE、CD交于点F 求证:F为CD的中点证明:过D作DNAE交BC于ND为AB中点BN = EN又E为BC的三等分点BN = EN = CEDNAEF为CD的中点35.有下列情况时常作三角形中位线.有一边中点;有线段倍分关系;有两边(或两边以上)中点.例:如图,AE为正方形ABCD中BAC的平分线,AE分别交BD、BC于F、E,AC、BD相交于O求证:OF =CE证明:取AE的中点N,连结ON,则ON为ACE的中位线ONCE,ON =CE6 =ONE四边形ABCD为正方形3 =4 = 45o5 =31, 6 =421 =2 5 =66

    37、=ONEONE =5ON = OFOF =CE36.有下列情况时常构造梯形中位线有一腰中点有两腰中点涉及梯形上、下底和例1:已知,如图,梯形ABCD中,ADBC,DAB = 90o ,E为CD的中点,连结AE、BE求证:AE = BE 证明:取AB的中点F,连结EF,则EFADDAB =EFB =90oEFABEF为AB的中垂线AE = BE例2:从ABCD的顶点ABCD向形外的任意直线MN引垂线AA、BB、CC、DD,垂足分别为A、B、C、D求证:AACC = BBDD证明:连结AC、BD,它们交于点O,过O作OEMN于E,则AAOECC四边形ABCD为平行四边形AO = COAE = CE AACC = 2OE同理可证:BBDD = 2OEAACC = BBDD相似形和解直角三角形部分37.当图形中有叉线(基本图形如下)时,常作平行线.例:已知,如图,AD为ABC的中线,F为AB上任一点,CF交AD于E求证:证明:过F作FNBC交AD于N 又CD = BD38.有中线时延长中线(有时也可在中线上截取线段)构造平行四边形.例:AD为ABC的中线,E为AD上一点,BE、CE的延长线分别交AC、AB于点M、N求证:MNBC 证明:延长AD至F,使DF = DE,连结BF、CF,则四边形BFCE为平行四边形BFCN CFBM MNBC

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:初中几何常见辅助线作法50种.docx
    链接地址:https://www.163wenku.com/p-2192841.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库