书签 分享 收藏 举报 版权申诉 / 32
上传文档赚钱

类型《塑性加工模拟及自动控制》课件:SimulationsMaterials3.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2161239
  • 上传时间:2022-03-09
  • 格式:PPT
  • 页数:32
  • 大小:1.71MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《塑性加工模拟及自动控制》课件:SimulationsMaterials3.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    塑性加工模拟及自动控制 塑性 加工 模拟 自动控制 课件 SimulationsMaterials3
    资源描述:

    1、Simulations of plastic processing: elasto-plastic deformationPart 3: plastic deformationTeacher: 法法 QQ号:2306847727, office 523 A区Content Tensile test (拉伸测试) Compression test Engineering and true stress/strain Theory of plastic deformation (塑性变形理论)Lashen ceshiSuxing bianxing lilunTensile testHypothes

    2、is: During the tensile test, the tensile direction and the force are aligned The surfaces normal to the tensile direction (=section) stay normal to the tensile direction= no shear of the sample During plastic deformation, the volume is constantTensile test Tensile specimens - round and flatTensile t

    3、est l0 = initial length l = current length at time t Strain = Deformation = xx = ln(l/l0) (l-l0)/l0 is call the engineering strain ln(l/l0) is the true strain If a sample is deformed 2 times, from l0 to l1 and from l1 to l2, the total strain is: = ln(l1/l0) + ln(l2/l1) = ln(l1/l0*l2/l1) = ln(l2/l0)

    4、Tensile test The stress is defined by: = zz = F/S Engineering stress: = F/S0 True stress: = F/SThe volume is constant: 1/S=l/(S0l0) = Fl/(S0l0)S0l0SlFTensile testNecking 颈缩-jingsuo strictionRupture 断裂- duanlie ruptureUltimate tensile strength UTS 抗拉强度- kangla qiangdu Limite de rsistance mcanique RmS

    5、tress 应力 - contrainte Elongation A(%)- 延伸率- yanshenlv allongement rupturePlastic deformation 塑性变形 - dformation plastiqueElastic strain 弹性应变 - dformation lastiqueYield strength Ys 屈服强度- qufu qiangdu Limite dlasticiteStrain -应变 - dformationTensile testTensile testCompression testHypothesis: During the

    6、 compression test, the compression direction and the force are aligned The surfaces normal to the compression direction (=section) stay normal to the compression direction, but shear can happen in the compression plane During plastic deformation, the volume is constantCompression test h0 = initial h

    7、igh h = current high at time t The strain is in theory negative, but by convenience we adopt positives values Strain = Deformation = xx = -ln(h/h0)=ln(h0/h) (h0-h)/h0 is call the engineering strain ln(h0/h) is the true strain True strains are additivesCompression test The stress is defined by: = zz

    8、= F/S Engineering stress: = F/S0 True stress: = F/SThe volume is constant: 1/S=h/(S0h0) = Fh/(S0h0)S0FSh0hCompression testEngineering and true stress/strain Total strain=elastic strain + plastic strain When the sample (or material) is unloaded (stress=0), the elastic strain is null. Elastic strain c

    9、hanges the volume of the sample (except if =0.5) When we draw the stress-strain curves, samples are loaded, but we make the approximation that the volume is constant.Engineering and true stress/strain Exercises: change engineering stress into true stress and vice-versa change engineering strain into

    10、 true strain and vice-versa By convention, negative stress are compressive and reduction induce negative strain; but in uniaxial loading by convenience the values are positives.Engineering and true stress/strain Exercise1: compression True strain = ln(h0/h) Enginering strain E=(h0-h)/h0=1-h/h0 = =-l

    11、n(1-E) = E=1-exp(-)Engineering and true stress/strainExample:True strain is: =500+500(1-exp(-7)Figures show Engineering stress-strain in tension and compressionEngineering and true stress/strain True stress-strain are modeled by power laws (voce law): =n =0+n =0+k(1-exp(-n)Engineering and true stres

    12、s/strainTheory of plastic deformation Dislocations slip(位错的滑移) Grain boundary sliding (晶界的滑移)(at HT) Twinning(孪生)ParentTwinsWeicuo de huayiJingjie de hualiTheory of plastic deformation Dislocations slip in the slip plane Dislocations produce a shear of the lattice (位错产生晶格的剪切)Weicuo chansheng jingge

    13、de jianqieTheory of plastic deformation Slip systems in face centered cubic (Al, Cu) Planes 111 Directions 12 slip systems (with 2 direction each) (plane)direction=0 (they are perpendicular )Theory of plastic deformation Body Centered Cubic (BCC) crystals Planes 110 (or 112 or 123) Directions Theory

    14、 of plastic deformation Hexagonal close packed (HCP) crystals Basal slip: (0001) Prismatic slip: 10-10 Pyramidal slip: 10-11 Pyramidal slip: 11-22 10-11Theory of plastic deformationThe deformation of single crystals (单晶体):Active slip planerotation( Without constraints due to the apparatus )Rotation

    15、of the planeTensile axisTheory of plastic deformation In single crystals, the applied stress depend on the orientation of the activated slip systemStress vs basal plane orientation of Mg Singlecrystal E.C. Burke and W.R. Hibbard, Plastic Deformation of Magnesium Single Crystals”, Transaction AIME, J

    16、ournal of metals-295 (1952)Theory of plastic deformation Slip generates a shear of the crystal and a rotation of the latticexynb/2xyxy/2/2 around z=+Burgers vectorSlip planeTheory of plastic deformation n= is the plane normal b= is the normalized burger vector Schmid Factor: M= cos()cos() = bz*nzZXY

    17、nbnx ny nzbx by bzTheory of plastic deformationSchmid Factor computed for different values of and : if b, n and the loading direction are in the same plane, so = 90 - M= cos()cos() If b (or n) is normal to the loading direction, SF=0Theory of plastic deformation Schmid Factor: For single crystal in

    18、uniaxial deformation, the activated slip system is the system with the highest Schmid Factor.ZXYnbTheory of plastic deformation The Schmid Factor depend on the orientation of the slip system (plane and burger vector) The Schmid Factor is used to compute the shear stress s s is the shear in the slip

    19、plane, along the burger vector, whereas is the stress along the loading direction in the sample coordinate s=MTheory of plastic deformation The slip system is activated (dislocations move and crystal deforms) when the shear stress s is equal to the critical resolved shear stress (CRSS) cs: s=cs=M The CRSS is a property of the material, temperature and strain rate

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《塑性加工模拟及自动控制》课件:SimulationsMaterials3.ppt
    链接地址:https://www.163wenku.com/p-2161239.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库