书签 分享 收藏 举报 版权申诉 / 44
上传文档赚钱

类型《塑性加工模拟及自动控制》课件:SimulationsMaterials1.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2161238
  • 上传时间:2022-03-09
  • 格式:PPT
  • 页数:44
  • 大小:687KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《塑性加工模拟及自动控制》课件:SimulationsMaterials1.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    塑性加工模拟及自动控制 塑性 加工 模拟 自动控制 课件 SimulationsMaterials1
    资源描述:

    1、Simulations of plastic processing: elasto-plastic deformationPart 1: tensors and continum mechanicsTeacher: 法法 QQ号:2306847727, office 423-2 A区Introduction In this class, we study materials at a macroscopic scale (宏观尺度): between dislocation (位错) and sample (样品) We use mathematics, mechanics, material

    2、s propertiesHongguan chiduPlan (2 weeks, 6 classes) Part 1: tensors and continuum mechanics张量和连续介质力学 Part 2: elastic deformation弹性变形 Part 3: plastic deformation塑性变形Zhangliang he lianxvjiezhi lixueSuxing bianxingtanxing bianxingContent Material element 材料单元 Stress tensor 应力张量 Strain tensor 应变张量Yingli

    3、 zhangliang Several years ago, you have learn Newtonian mechanic: the solids were undeformable, and sometime modeled as material point. In material science, we study the mechanical behavior (力学行为) inside a deformable body of material body of material = sample, beam, mechanic piece, bridge Material e

    4、lementLixue xingweiMaterial element The material is a continuum (连续体) i.e. the matter is continuously distributed in the body (no void, no cracks (无空位,无裂纹) So the body can be sub-divided into infinitesimal elements (无穷小的单位元)Wu kongweiWu liewenWu qiongxiao de dan weiyuanlianxvtiMaterial element The b

    5、ody of material is divided into material elements These material elements are also called infinitesimal elements (for derivation /x) or representative volume elements Each material element can have different properties(性能)and mechanical response (stress, strain)Material elementMaterial=body=solidcut

    6、 the material with a virtual plane (虚拟的平面)Material element (1 face is in the plane)X0YZBasisxvni How to define 1 element:Material elementWe want to study in 3 dimensions, so use 3 planes defined with the basis:X0YZBasisPlane normal to YPlane normal to ZPlane normal to XMaterial elementdxX0YZdydzWe s

    7、tudy the behavior of 1 element of the material, of dimension 111. element size has no unit, but the size of the element much bigger than the atoms (原子) , to be a continuum. The size depend on what we want to study, of what accuracy we need.YuanziMaterial element In mechanic, the material element con

    8、tain many grains In crystal plasticity (晶体的塑性), the material element is smaller than a grain In continuous materials, the forces are related to the bodys deformation through constitutive equations (本构方程) The internal forces are continuous and the material displacement is a derivable function (可导的函数)

    9、Jingti de suxingBengou fangchengKedao de hanshuStress tensor We saw that the body of material can be subdivided into material elements We want to study what happen to the body of material when some forces are applied to the body So we must study what happen to each element of the material We study h

    10、ow the forces are transmitted to the elementsStress tensorHypothesis on applied forces: The solid is in equilibrium (do not move) Some forces P are applied on the solid Equilibrium of forces and moment of forces/Torques (应力与动量平衡)P1P2P4P3P1+P2+P3+P4=0Equilibrium in rotation:M1+M2+M3+M4=0(Mi = PiOA, P

    11、i applied on A)X0YZYingli yu dongliang pinghengStress tensorOrigin of the stress tensor: solid and internal stress We cut the solid (body of material) along a planeP1P2P4P3X0YZVirtual plane to cut the materialVirtual surface inside the materialStress tensor Fr is the force applied on the left part b

    12、y the right part External forces can be applied on points, surfaces, or volume; but internal forces are surface forces. The forces Fr and Fl are equivalent on the 2 sides of the solidP1P2P4P3FlrlFrStress tensor The force Fr=-(P1+P2) is discomposed into a normal component Fn (垂直分量) and a shear compon

    13、ent Ft (剪切分量) in the plane (tangential force) In compression, the normal force Fn is negativeFrl-FrlP1P2FnFtChuizhi fenliangJianqie fenliangStress tensor On the surface dS of the element, we have the force per unit surface r= stress (应力) The force on the right face of the element dS=dzdy is: S rdS =

    14、 yz rdydz = -Fr-FrlFnFtrntlX0YZdSStress tensor If the internal force is homogeneous (均匀的) on the surface S, F=S Usually the stress distribution in the material is not homogeneous For complex cases, we may use Finite Elements programs (有限元软件) to solve the constitutive equations (for example the Hooke

    15、 law) and compute the stress (and strain) in all the elements.JunyunYouxianyuan ruanjianStress tensor We apply the virtual cut analysis on the 3 faces of the material element: we get 3 vector of stress = force/surfacertfStress tensor We discompose t, r, and f, into 3 component in the basis: we get 9

    16、 components for the stresses.yzzzzyxzxyxxzxyyyx0XZYrtfStress tensor Normal stresses (正应力) ii, i=x, y, z Shear stresses (剪切应力) ij, i, j = x, y, z, ij xy is the stress component in the direction x on the plane of normal y.yzzzzyxzxyxxzxyyyx0XZYStress tensor The stress tensor is used to compute the for

    17、ce F on a face of normal n (and surface S=1): F(n) = n = So is the force on the face normal to X: r=-Frxx xy xz yx yy yz zx zy zznx ny nzxx yx zxzyxyyyStress tensor The Stress tensor on a material element depend on the position =(x,y,z) is a function of the position x, y, z of the element Stresses o

    18、n faces Y:0XZYzy+ zy/y*dyxy+ xy/y*dyyy+ yy/y*dyStress tensor Stresses on faces X and Z In continuum mechanics, the stresses are continuous. Finite Element methods use equilibrium principles to compute heterogeneous (不均匀的) stresses and deformations zx+ zx/x*dxxx+ xx/x*dxyx+ yx/x*dxzz+ zz/z*dzxz+ xz/z

    19、*dzyz+ yz/z*dz0XZYStress tensor The stresses through the material element must be in equilibrium: Equilibrium in forces:div()=0 Equilibrium in moment of forces (rotation): = T the tensor is symmetric (ij=ji)xx/x + xy/y + xz/z = 0yx/x + yy/y + yz/z = 0zx/x + zy/y + zz/z = 0Stress tensor Whatever is t

    20、he stress tensor, there is a basis in which there is no shear:= In this basis, the stress are called Principal stresses0XZY0e1e3e2I 0 0 0 II 0 0 0 IIIxx xy xz yx yy yz zx zy zzStress tensor Change of basis (=referential, coordinate system): simple shear = plane stress0XZY0e1e3Y=e2zx=10MPaxz=10MPa11=

    21、10MPa33=-10MPaXYZ=0 0 10 0 0 0 10 0 0123=10 0 0 0 0 0 0 0 -10Demonstration: Express a matrix into another basis Transformation Matrix from (XYZ) to (e1 e2 e3): T= (express ei inside XYZ) 123=T-1xyzT1/20-1/20101/201/2Stress tensor Pressure p (球应力 ):p = Stress deviator tensor (应力偏张量) s: s = pId = Devi

    22、atoric of = s11 + s22 + s33 = 0 The stress deviator tensor is useful because pressure do not produce plastic deformationxx + yy + zz 3xx-p xy xz yx yy-p yz zx zy zz-pying li pian zhang liangQiuyingliStress tensor Equivalent von Mises stress (等效应力) = VM = 3/2(sxx2+syy2+szz2+2sxy2+2sxz2+2syz2) Also ca

    23、lled Equivalent tensile stress because in uniaxial tension p= xx/3 :VM = 3/2(xx-p)2+p2+p2)= 3/2(4/9 +1/9+1/9)xx = xx Use to compare different stress states (应力状态) Use with the von Mises equivalent strain: VM=2/3(xx2+yy2+ zz2+2xy2+2xz2+2yz2)Dengxiao yingliYingli zhuangtaiStress tensor Von Mises stres

    24、s in plane stresses (平面应力) p=(x+y)/3 = VM=3/2(x-p)2+(y-p)2-p2)=x2+y2-xy Draw VM=constantxxyyxyVM=x=yx=-y=VM/3Stress tensor Von Mises stress in principal stress basis (i.e. if ij, ij=0) The constant von Mises stress is a cylinder (圆柱体) tilted at 45 off the axisyxz(111)Yuan zhu tiStress tensor Compute

    25、 and as a function of Mohr circle in plane stress is maximum for =45xxyy2xxyy= xsin2+ycos2= ysincos-xcossinchange of basis for Mohr circle T=xyz= 123=T-1xyzT =sin-cos0cossin0001x000y0000 xsin2+ycos2 ysincos-xcossin 0ysincos-xcossin xcos2+ysin2 0 0 0 0Strain tensor We saw the body of materials and th

    26、e material elements are submitted to forces. In material science, as in the real life, the materials can deform We need to measure and quantify these deformations Usually these deformations are very smallStrain tensor Origin of the strain tensor: the displacement of material Displacement field (位移场)

    27、 u(x,y,z) for each point X(x,y,z) of the material u=eyezbeforeafteru(x,y,z)0X(x,y,z)exux uy uzWei yi changStrain tensor Displacement gradient tensor (位移梯度张量) G = grad(u)= The symmetric (对称的) part of G is =1/2(G+GT) is the strain tensor (or deformation tensor) The anti-symmetric (非对称的) part of G is =

    28、1/2(G-GT) is the rotation tensor (or spin tensor)ux/x ux/y ux/z uy/x uy/y uy/z uz/x uz/y uz/zWei yi ti du zhangliangFei duicheng deStrain tensor= ux 1 ux uy 1 ux uz x 2 y x 2 z x 1 uy ux uy 1 uy uz 2 x y y 2 z y1 uz ux 1 uz uy uz2 x z 2 y z z ( + ) ( + )( + ) ( + )( + ) ( + )Strain tensor Principal

    29、strain: as the strain tensor is symmetric, there is a coordinate system (basis, 坐标系) where ij = ij=0 In this basis xx, yy and zz are call the principal strain (eigenvalues of the matrix, 特征值) =YXe1e2Zuo biao xiTezheng zhiStrain tensorExamples of strain tensor: Pure shear u=ux=yG = = Plane strain ten

    30、sion u= =0 /2 0 /2 0 0 0 0 0- 0 0 0 0 0 0 0YX(x-a) (y-b) 0e2e1(a, b, 0)sin()tan() (in radian)0 0 0 0 0 0 0 0 Strain along the elongation direction y for homogeneous deformation: uy=(lf-l0)/l0y Gyy= = (lf-l0)/l0 = yyStrain tensoryxl0lfuy y Total strain along a uniform elongation path: Current length

    31、l at t, l+dl at t+dt =dl/l is the elongation during dt total= lilfdl/l = ln(l) lilf=ln(lf)-ln(li)=ln( )Strain tensorlf lillilfStrain tensor Change of volume (2D): V=dxdydz dV=(dx+xxdx)(dy+yydy)dz -dxdydz/dxdydz xx+yy (we neglect xxyy) dxdyxxdxyydyxxdydzxxdydzStrain tensor Uniform deformation (均匀变形): the strain tensor is constant through the material (do not depend on (x,y,z) is the sum of the elastic and plastic strain In plastic deformation, the volume is constant (体积不变), so xx+yy+zz=0 Shear does not produce any change of volume.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《塑性加工模拟及自动控制》课件:SimulationsMaterials1.ppt
    链接地址:https://www.163wenku.com/p-2161238.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库