《金属塑性成形力学》课件:2变形力学方程.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《金属塑性成形力学》课件:2变形力学方程.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金属塑性成形力学 金属 塑性 成形 力学 课件 变形 方程
- 资源描述:
-
1、2 变形力学方程变形力学方程教学目的和要求教学目的和要求掌握变形力学主要方程:静力平衡方程(包括静力掌握变形力学主要方程:静力平衡方程(包括静力平衡方程和应力边界条件)、平衡方程和应力边界条件)、几何方程几何方程(包括应变与位(包括应变与位移的关系方程与移的关系方程与协调方程协调方程)、物理方程(包括屈服准则)、物理方程(包括屈服准则及应力与应变的关系方程),以及相关的内容,为进行及应力与应变的关系方程),以及相关的内容,为进行力能参数和变形参数的工程计算打下基础。力能参数和变形参数的工程计算打下基础。 内容2.1力平衡微分方程力平衡微分方程2.2应力边界条件及接触摩擦应力边界条件及接触摩擦2
2、.3*变形协调方程变形协调方程2.4屈服准则屈服准则2.5应力与应变的关系方程应力与应变的关系方程2.6等效应力和等效应变等效应力和等效应变(自学自学)2.7变形抗力模型变形抗力模型(自学自学)2.8平面变形和轴对称问题的变形力学方程平面变形和轴对称问题的变形力学方程2.1力平衡微分方程2.1.1直角坐标系的力平衡微分方程直角坐标系的力平衡微分方程2.1.2极坐标系的力平衡微分方程极坐标系的力平衡微分方程2.1.3圆柱面坐标系的力平衡微分方程圆柱面坐标系的力平衡微分方程2.1.4球面坐标系的力平衡微分方程球面坐标系的力平衡微分方程n变形体内各点间的应力状态是不同的,但其变形体内各点间的应力状态
3、是不同的,但其变化变化也不是任意的,也不是任意的,各点的应力分量必须满足各点的应力分量必须满足静力静力平衡关系平衡关系力平衡方程。力平衡方程。n力平衡方程是研究和确定变形体内应力分布(分布规律)的重力平衡方程是研究和确定变形体内应力分布(分布规律)的重要依据。要依据。n力平衡方程:力平衡方程:直角坐标系直角坐标系、极坐标第、圆柱面坐标系、球面坐、极坐标第、圆柱面坐标系、球面坐标系标系n体积力(惯性力和重力)一般可忽略。体积力(惯性力和重力)一般可忽略。2.1.1直角坐标系的力平衡微分方程公式含义:公式含义:每一应力每一应力增量增量可以用其对某一坐标轴的偏微分表示,该坐标轴是指向该应力平面的移动
4、方可以用其对某一坐标轴的偏微分表示,该坐标轴是指向该应力平面的移动方向。向。直角坐标系适用于矩形件压缩等直角坐标系适用于矩形件压缩等。式式(2.3)x轴方向静力平衡,轴方向静力平衡, X=0:力平衡(微分)方程:力平衡(微分)方程:式式(2.4)力平衡方程是以力平衡方程是以(静静)力力平衡为基础,反映平衡为基础,反映变形体内无限相邻点之间应力状态各分变形体内无限相邻点之间应力状态各分量随坐标变化的关系方程。它是求解变量随坐标变化的关系方程。它是求解变形体内应力分布规律的重要方程之一;形体内应力分布规律的重要方程之一;既适用于弹性问题,也适用于塑性问题。既适用于弹性问题,也适用于塑性问题。剪应力
5、互等定理:剪应力互等定理:xy= yxyz= zyzx= xz式式(2.7)表述表述(P43):两个互相垂直的微平面上的剪应力,其垂直于该二平面交线的两个互相垂直的微平面上的剪应力,其垂直于该二平面交线的分量大小相等地,而方向或均指向此交线,或均背离此交线。分量大小相等地,而方向或均指向此交线,或均背离此交线。2.1.2极坐标系的力平衡微分方程n在平面问题中,变形体是圆形、环形、扇形和楔形,宜用极坐标。在平面问题中,变形体是圆形、环形、扇形和楔形,宜用极坐标。接近原点时,该公式不适用。接近原点时,该公式不适用。式式(2.8)2.1.3圆柱面坐标系的力平衡微分方程n轴对称应力状态的变形体(圆柱体
6、的压缩、挤压和拉拔等)宜用轴对称应力状态的变形体(圆柱体的压缩、挤压和拉拔等)宜用圆柱面坐标系。圆柱面坐标系。式式(2.9)2.1.4球面坐标系的力平衡微分方程n在研究棒材挤压和拉拔等某些变形过程时,可采用球面坐标系。在研究棒材挤压和拉拔等某些变形过程时,可采用球面坐标系。2.2应力边界条件及接触摩擦2.2.3应力边界条件的种类应力边界条件的种类2.2.1应力边界条件方程应力边界条件方程2.2.2金属塑性成形中的接触摩擦金属塑性成形中的接触摩擦2.2.3应力边界条件的种类n应力边界条件的种类:应力边界条件的种类:1.自由表面:无自由表面:无n、f2.工具与工件接触表面:有工具与工件接触表面:有
7、n、f3.变形区与非变形区的分界面:有变形区与非变形区的分界面:有n、f、其他外力、其他外力n边界条件的边界条件的处理处理很重要。很重要。2.2.1应力边界条件方程应力边界条件方程应力边界条件方程式式(1.2)式式(2.10)n应力边界条件方程:应力边界条件方程: 表达了过外表面上任意点,单位表面力与过该点的三个坐标表达了过外表面上任意点,单位表面力与过该点的三个坐标面上的应力分量之间的关系。面上的应力分量之间的关系。n应力边界条件方程既适用于弹性问题,也适用于塑性问题。应力边界条件方程既适用于弹性问题,也适用于塑性问题。2.2.2金属塑性成形中的接触摩擦库仑(干摩擦)定律:库仑(干摩擦)定律
8、: T=fP f=fnn在常在常f区,影响区,影响f的因素:的因素:1.工具与成形材料的性质及表面状态;工具与成形材料的性质及表面状态;2.工具与成形材料间的相对运动速度;工具与成形材料间的相对运动速度;3.温度;(温度;(Cu、Fe特殊)特殊)4.润滑。润滑。nf=mkk:屈服剪应力:屈服剪应力(剪切屈服极限剪切屈服极限)m:摩擦因子,:摩擦因子,m=01 (用实验确定用实验确定)很少出现很少出现式式(2.11)式式(2.12)2.4屈服准则2.4.1屈服准则的含义屈服准则的含义2.4.2屈雷斯卡屈服准则(最大剪应力理论)屈雷斯卡屈服准则(最大剪应力理论)2.4.3密赛斯屈服准则(变形能定值
9、理论)密赛斯屈服准则(变形能定值理论)2.4.4屈服准则的几何解释屈服准则的几何解释2.4.5屈服准则的实验验证屈服准则的实验验证2.4.1屈服准则的含义n力学性能力学性能(内因内因)+应力状态应力状态(外因外因)屈服发生屈服发生n对同一种金属对同一种金属(内因确定时内因确定时),在相同变形条件,在相同变形条件 (变形温度等变形温度等)下,下,屈服只取决于应力状态。屈服只取决于应力状态。n塑性理论的重要任务之一是找出发生屈服的条件,确定变形体受塑性理论的重要任务之一是找出发生屈服的条件,确定变形体受外力后产生的应力分量与材料的物理常数间的一定关系,该关系外力后产生的应力分量与材料的物理常数间的
10、一定关系,该关系标志塑性状态的存在。标志塑性状态的存在。n屈服准则(塑性条件):变形体受外力后产生的应力分量与材料屈服准则(塑性条件):变形体受外力后产生的应力分量与材料物理常数间的关系。物理常数间的关系。n用主应力表示应力状态最简单用主应力表示应力状态最简单n简单应力状态:单向拉伸时,简单应力状态:单向拉伸时,1=s,2=3=0, 屈服屈服 复杂应力状态时,复杂应力状态时,1、2、3在何种在何种组合组合下下 屈服屈服 ? n f(1,2,3)=C (C:材料常数:材料常数) m不影响塑性变形不影响塑性变形(与屈服无关与屈服无关) f(1,2,3)=C f(I1,I2,I3)=C f(I2,I
11、3)=C I1=0 (主应力状态主应力状态)最简单:最简单: f(I2,I3)=I2=C +2.4.2屈雷斯卡屈服准则(最大剪应力理论)最大剪应力理论:最大剪应力理论:假定对同一金属在同样的变形条件下,无论是简单应力状态还假定对同一金属在同样的变形条件下,无论是简单应力状态还是复杂应力状态,只要最大剪应力达到极限值就发生屈服,即:是复杂应力状态,只要最大剪应力达到极限值就发生屈服,即:式式(2.15)n屈雷斯卡屈雷斯卡(Tresca)屈服准则屈服准则: 单向拉伸单向拉伸 1-3=s 薄壁管扭转薄壁管扭转 1-3=2k k= s /2Tresca屈服准则屈服准则Tresca屈服准则计算较简单,有
12、时比较符合实际,故较常用。屈服准则计算较简单,有时比较符合实际,故较常用。但未反映但未反映2。莫尔圆莫尔圆:单辉祖,:单辉祖,“材料力材料力学教程学教程”,国防工业出版社,国防工业出版社,1982 P210式式(2.15)2.4.3密赛斯屈服准则(变形能定值理论)n密赛斯(密赛斯(Mises)屈服准则)屈服准则1、屈服函数:屈服函数:f(ij)=0 f(ij)I2C=02、密赛斯屈服准则、密赛斯屈服准则:3、按密赛斯屈服准则,、按密赛斯屈服准则, 单向拉伸时:单向拉伸时:k= s /2 纯剪时:纯剪时:最简单:最简单: f(I2,I3)=I2=C 式式(2.20)式式(2.21)一般应力状态一
13、般应力状态 主应力状态主应力状态 s ss s0.5770.577 3 3k kTresca屈服准则:屈服准则: k= s /2I2= s 2/3+式式(1.20) (2.18)式式(2.19)4、密赛斯屈服准则物理和力学解释:密赛斯屈服准则物理和力学解释: Mises屈服准则更符合实际。屈服准则更符合实际。 A、物理(变形能)解释、物理(变形能)解释发生塑性变形时,单位体积形状变化能发生塑性变形时,单位体积形状变化能(Wf)达到极值:达到极值: 密赛斯屈服准则也称为变形能定值理论密赛斯屈服准则也称为变形能定值理论B、力学解释、力学解释3 32 2s s8s sf f3E3E1 1W W式式(
14、1.16)n密赛斯屈服准则简化形式密赛斯屈服准则简化形式洛德洛德(Lode)参数:描述应力偏差量的一个参量。参数:描述应力偏差量的一个参量。2231312d13d2132213231231231231图图2.132n密赛斯屈服准则简化形式密赛斯屈服准则简化形式13ss2d23232d式式(2.22)s312231312d屈雷斯卡屈服准则:屈雷斯卡屈服准则:1-3=sn密赛斯屈服准则简化形式密赛斯屈服准则简化形式121ds313223121d0ds3231轴对称应力状态轴对称应力状态 平面变形状态平面变形状态 其它应力状态其它应力状态155. 111155. 12.4.4屈服准则的几何解释式式(
15、2.23)式式(2.24)22132322212s式式(2.21)(oN为球形应力分量的矢量和)为球形应力分量的矢量和)(PN为偏差应力分量的矢量和)为偏差应力分量的矢量和)n屈服轨迹(塑性表面):屈服轨迹(塑性表面):Mises屈服准则在屈服准则在主主应力空间是一个无限长的应力空间是一个无限长的圆柱面圆柱面,其,其轴线轴线与坐标成等倾角,与坐标成等倾角,半径半径为为 或或n屈服曲线:塑性圆柱面与屈服曲线:塑性圆柱面与平面的交线。平面的交线。n平面:主应力空间中,过原点并与三个主轴等倾的平面。平面:主应力空间中,过原点并与三个主轴等倾的平面。n平面方程:平面方程:123=0 (平面上平均平面上
展开阅读全文