《边界层气象学》课件:10边界层气象学总复习.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《边界层气象学》课件:10边界层气象学总复习.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 边界层气象学 边界层 气象学 课件 10 复习
- 资源描述:
-
1、边界层气象学总复习边界层气象学总复习壹:基本概念壹:基本概念掌握:掌握:大气边界层、湍流闭合问题、泰勒湍流冻结大气边界层、湍流闭合问题、泰勒湍流冻结假说、奥布霍夫长度、理查逊数、地表粗糙度、湍流假说、奥布霍夫长度、理查逊数、地表粗糙度、湍流动能、摩擦速度、湍流通量、雷诺应力、湍流强度、动能、摩擦速度、湍流通量、雷诺应力、湍流强度、混合长理论、混合长理论、Monin-Obukhov相似理论、埃克曼螺线、相似理论、埃克曼螺线、埃克曼抽吸、中性边界层、对流边界层、稳定边界层、埃克曼抽吸、中性边界层、对流边界层、稳定边界层、低空急流、惯性振荡理论低空急流、惯性振荡理论ABL general chara
2、cteristicslABL flows are predominately turbulent. Vertical transports of momentum, energy and mass are mainly accomplished by turbulence of various scales, from millimeter up to the whole boundary-layer.lBoundary-layer structure varies with time and space, especially, ABL features a distinct diurnal
3、 cycle. Diurnal evolution of ABLThe formulation suggests ways in which the Reynolds stresses might be measured, but gives no indication of how to express them in terms of the mean quantities. The simplest approach is to draw an analogy with molecular viscosity and, considering a plane boundary in th
4、e xy-plane, write for the eddy stress in the x direction on a plane parallel to the boundarywhere K is the coefficient of eddy viscosity (with the same dimensions as kinematic viscosity) and is effectively defined above.Typical atmospheric values of K lie in the range 1100 m2 s-1. These are high val
5、ues when compared with the molecular viscosity of ordinary fluids (typically 10-5 m2 s-1 for gases at STP). They demonstrate the effectiveness of eddy motions compared with molecular motions in transferring momentum.uu wKz Effects of Turbulence, K - theoryuz The limitations of K theory: 1. eddy visc
6、osities depend on the flow; 2. K not a constant in BL; 3. K theory is not accurate for large eddies. Mixing length hypothesis 1Prt 0.8 is the turbulent Prandtl number for air.For the determination of the turbulent diffusion coefficients, the mixing length parameterization is used, which is based on
7、the work of Prandtl (1925).zqKqwzKwzuKwuEHMHMKKt/Pr Mixing length hypothesis 2Mixing lengthIn the layer within a few tens of meters of the surface, the shearing stress is approximately constanta layer known as the constant flux layer. A further plausible hypothesis is that the size and path of the e
8、ddies should be proportional to height above the surface, i.e., l = z where is known as von Karmans constant and has a value of about 0.4. On integrating under these assumptions the wind profile is given bywhere u* = (/)1/2 is known as the friction velocity and the constant of integration, z0, as th
9、e roughness length, since it depends on the surface roughness. This fits well under conditions of neutral stability. For other situations, as might be expected, the wind profile and the associated momentum, heat, and water vapor fluxes depend very considerably on the vertical stability.22uu wlz *0ln
10、uzuzMixing length hypothesis 3, logarithmic profile M-O similarity theory 1lBuckinghams theoremlSimilarity theories provide a powerful framework for analysis of experimental data, as well as simple parameterisations for representing the complex dynamic processes involved.lA similarity theory has thr
11、ee key ingredients. First, problems governed by similar dynamic processes are identified and then characterized with a few dimensionless parameters (e.g. the Reynolds number) which we call similarity parameters. Second, a set of scaling parameters is identified and used to establish non-dimensionali
12、sed dependent and independent variables. Third, we derive a set of similarity laws which are universally valid. MOST 2, Obukhov lengthMOST 3, flux-gradient relations贰:平均量预报方程贰:平均量预报方程jjijiijijcijijixuuxuxpufgxuutu22331jjpvjjpjjjxucELxQcxxut)(1*22 ) (jjqjjxquSxqutq掌握掌握方程组的推导过程、每项的物理意义、方程组的推导过程、每项的物理意
13、义、并能解决一些实际问题并能解决一些实际问题Navier Stokes equations Claude-Louis Navier(France, 17851836) George Stokes(England, 18191903)lmay be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. lhelp with the design of aircraft and cars, the study of blood flow, the design of p
14、ower stations, the analysis of pollution, and many other things. lCoupled with Maxwells equations they can be used to model and study magnetohydrodynamics.lThe Clay Mathematics Institute has called this one of the seven most important open problems in mathematics and has offered a US$1,000,000 prize
展开阅读全文