工程力学课件:A图形性质.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《工程力学课件:A图形性质.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程力学 课件 图形 性质
- 资源描述:
-
1、1A-1 静矩和形心静矩和形心A-2 惯性矩和惯性积惯性矩和惯性积A-3 平移轴公式平移轴公式A-4 转轴公式转轴公式附录附录A A 平面图形的几何性质平面图形的几何性质附附 录录A-5 主惯性轴、主惯性矩、形心主惯性矩主惯性轴、主惯性矩、形心主惯性矩2A-A-1 1 静矩和形心静矩和形心一、简单图形的静矩(面积矩)一、简单图形的静矩(面积矩)1、定义:dA对y轴的微静矩:AyAzzdASydASyzdAyzo2、量纲:长度3;单位:m3、cm3、mm3。dA对z轴的微静矩:ydAdSzzdAdSy3、静矩的值可以是正值、负值、或零。3yzdAyzo4、静矩和形心的关系 可知AdAzzAdAy
2、yACAC,CAyAzzdASCAzAyydAS静矩和形心的关系静矩和形心的关系由平面图形的形心公式由平面图形的形心公式结论:结论: 图形对过形心的轴的静矩为零。图形对过形心的轴的静矩为零。 若图形对某轴的静矩为零,则此轴一定过图形的形心。若图形对某轴的静矩为零,则此轴一定过图形的形心。4zyAzydASCZhaaybdyhaaby22)2(habhCAybhadyydzzAyzdASbzhdz0bhz0222bbhCAzAzydASc22hhybdy2222hhby0求图形对y、z 轴的静矩5二、简单图形的形心二、简单图形的形心1、形心坐标公式:AydAASyAzcAzdAASzAyc2、形
3、心确定的规律:(1)图形有对称轴时,形心必在此对称轴上。形心必在此对称轴上。(2)图形有两个对称轴时,形心必在此两对称轴的交点处。6三、三、组合图形组合图形(由若干个基本图形组合而成的图形)(由若干个基本图形组合而成的图形)的静矩:的静矩:ciizizyASSciiyiyzASS四、组合图形的形心四、组合图形的形心:izicASyiyicASziAyAciiiAzAcii 利用基本图利用基本图形的结果,可使形的结果,可使组合图形的形心组合图形的形心计算简单计算简单基本图形基本图形-指面积、形心位置已知的图形指面积、形心位置已知的图形7212211AAzAzAAzAzccciic例例 试确定下图
4、的形心试确定下图的形心。212211AAyAyAAyAyccciic801010c(19.7;39.7)zyC1C2解法解法1 1:1)、建立坐标如图示,分割图形mmymmzmmAcc5,45,7001121mmymmzmmAcc60,5,12002222120120070012005700452)、求形心)7 .19 mm)(7 .3912007001200607005mm8801201010)(3 .20108011010110035mmc(-20.3;34.7)解法二:解法二:1)、分割图形及建立坐标系,如图所示zyC2C1. 0, 0,8001121ccyzmmAmmymmzmmAcc
5、60,35,110022222)、求形心)(7 .34108011010110060mm212211AAzAzAAzAzccciic212211AAyAyAAyAyccciic9解法三解法三:负面积法)(7 .19117812)77(459640mmzymmymmzmmAcc60,40,96001121mmymmzmmAcc65,45,1107022222C求形心:)(7 .397796)77(659660mm1C0C212211AAzAzAAzAzccciic212211AAyAyAAyAyccciic80120101010zy10A-A-2 2 惯性矩和惯性积惯性矩和惯性积一、简单图形的惯
6、性矩一、简单图形的惯性矩1 1、定义、定义:dAdA对对z z轴的惯性距轴的惯性距: :dAdA对对y y轴的惯性距轴的惯性距: :2 2、量纲:、量纲:m m4 4、mmmm4 4。yzdAzyo,2AzdAyIAydAzI2dAydIz2dAzdIy23 3、惯性矩是对轴而言(轴惯性矩)。、惯性矩是对轴而言(轴惯性矩)。4 4、惯性矩的取值恒为正值。、惯性矩的取值恒为正值。5 5、极惯性矩:、极惯性矩:(对(对o o点而言)点而言)AodAI2pI222yz 图形对图形对z z轴的惯性矩轴的惯性矩: :图形对图形对y y轴的惯性矩轴的惯性矩: :116 6、惯性矩与极惯性矩的关系:、惯性矩
7、与极惯性矩的关系: 图形对任一对相互垂直的坐标系的惯性矩之和恒图形对任一对相互垂直的坐标系的惯性矩之和恒等于此图形对该两轴交点的极惯性矩。等于此图形对该两轴交点的极惯性矩。ApdAI2AdAzy)(22AAdAzdAy22yzII yzdAzyo12bhzccyc7 7、简单图形惯性矩的计算、简单图形惯性矩的计算 圆形截面:圆形截面:实心(直径D)空心(外径D,内径d)4641DIIyz)(64144dDIIyz 矩形截面:矩形截面:32222121bhbdyydAyIhhAz32222121hbhdAzdAzIbbAybdyhdz3121bhIz3121hbIyzcycc13二、惯性半径:二
8、、惯性半径:AIiAiIzzzz2AIiAiIyyyy2三、简单图形的惯性积三、简单图形的惯性积1 1、定义:、定义:2 2、量纲:长度、量纲:长度4 4,单位:,单位:m m4 4、mmmm4 4。3 3、惯性积是对轴而言。、惯性积是对轴而言。AzyzydAI4 4、惯性积的取值为正值、负值、零。、惯性积的取值为正值、负值、零。yzdAzyo5 5、规律:、规律: 两坐标轴中,只要有一个轴为图形的对称轴,则两坐标轴中,只要有一个轴为图形的对称轴,则图形对这一坐标轴的惯性积为零。图形对这一坐标轴的惯性积为零。14解解:AaIdAyadAadAydAaydAyIzcAcAAcAcAz222222
9、)(AbIdAzbdAbdAzdAbzdAzIycAcAAcAcAy222222)(zyoyczcczcyc已知已知:图形截面积图形截面积A,形心坐标,形心坐标yc、 zc 、Izc、Iyc、 a、b已知。已知。Zc轴轴平平行于行于z z轴;轴;y yc c轴平行于轴平行于y y轴。轴。求求:I Iz z、I Iy y。A-A-3 3 平行移轴公式平行移轴公式一、平行移轴公式一、平行移轴公式AAcczydAbzayyzdAI)(abAIdAybdAzaabdAdAzyzcycAAccAAccdAyzab15二、组合图形的惯性矩和惯性积二、组合图形的惯性矩和惯性积zizIIyiyIIziyizy
10、II注意:注意:ZC、YC 为形心坐标。为形心坐标。 a、b为图形形心在为图形形心在yoz坐标系的坐标值,可正可负坐标系的坐标值,可正可负abAIIAbIIAaIIzcyczyycyzcz22,zyoyczcczcycdAyzab平行移轴公式平行移轴公式 根据惯性矩和惯性积的定义易得组合截面对于某轴的惯性矩(或惯性积)等于其各组成部分对于同一轴的惯性矩(或惯性积)之和:16例 求图示直径为求图示直径为d d 的半圆对其自身形心轴的半圆对其自身形心轴 x xc c 的惯性矩。的惯性矩。解:解:A-1222)(yRyb12d2d)(d3222020dyyRyyybyAySddAx3281223dd
11、dASyxcxyb(y)ycCdxc172、求对形心轴 xc 的惯性矩12826444ddIx181288)(4422dddyIIcxxc由平行移轴公式得:由平行移轴公式得: xyb(y)ycCdxc3281223dddASyxc18例例 试求图a 所示截面对于对称轴 x 的惯性矩。解:解:将截面看作一个矩形和两个半圆组成。1、矩形对 x 轴的惯性矩:44331mm1053331220080122adIx2、一个半圆对其自身形心轴 xc 轴的惯性矩(见上例)181288)(4422dddyIIcxxcxyC(a)d=8040100a=10040 a+2d3193、一个半圆对 x 的惯性矩由平行
12、移轴公式得:44222222mm103467322324832adaddddaIIcxx4、整个截面对于对称轴 x 的惯性矩:444421mm101227010346721053332xxxIIIxyC(a)d=8040100a=10040 a+2d320A-4 A-4 转轴公式转轴公式一、惯性矩和惯性积的转轴公式一、惯性矩和惯性积的转轴公式 dA 在坐标系在坐标系 ozy 和坐标系和坐标系oz1y1 的的坐标分别为(的的坐标分别为(z,y )和()和(z1 , y1 )sincossincos11zyyyzz代入代入惯性矩惯性矩的定义式:的定义式:AyIAzd211zyOzyzy11ABCD
展开阅读全文