结构化学课件:第2章原子结构2.1-2.2.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《结构化学课件:第2章原子结构2.1-2.2.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 化学课件 原子结构 2.1 2.2
- 资源描述:
-
1、已知体系的总能 量为E = T+V,其对应的Hamilton算符为:所以Schrdinger方程的形式为 ,这里E为体系的总能 量,为体系的波函数。22222222222HVVmxyzm HE222VEm 结论:定态结论:定态Schrdinger方程为方程为 原子是由一个原子核和若干个核外电子组成的体原子是由一个原子核和若干个核外电子组成的体系。在量子力学建立之前,系。在量子力学建立之前,Bohr为了解释氢原子光为了解释氢原子光谱谱, 提出氢原子结构模型。原子包括中性原子、负离提出氢原子结构模型。原子包括中性原子、负离子、正离子。子、正离子。氢原子激发后会发出光来,测其氢原子激发后会发出光来,
2、测其波长波长,得到,得到氢原子光谱氢原子光谱。656.3486.1434.1nm410.2HHHHH原子结构理论的发展原子结构理论的发展 Dalton(原子学说)(原子学说): 1 .元素的最终组成者是原子;元素的最终组成者是原子; 2.原子是不能创造、不能毁灭、不可再分,原子是不能创造、不能毁灭、不可再分, 在化学变化中保持不变的质点;在化学变化中保持不变的质点; 3.同一元素的原子,其形状、质量的性质都同一元素的原子,其形状、质量的性质都相同;相同; 4.原子以简单数目的比例组成化合物。原子以简单数目的比例组成化合物。恩格斯对道尔顿原子学说给予很高评价,但对原子不可再分的观点提出异议。18
3、97年,J.J.Thomson发现了电子,打开了原子内部结构的大门,化学进入了现代时期。1885年到1910年间,Balmer(巴尔末)、Rydberg(里德伯)等对氢原子的光谱归纳得出正确的经验公式: 式中,n1、n2为整数( n1n2); R=109677.58cm-1,称为Rydberg常数。 )11(12221nnRc卢瑟福的卢瑟福的“行星绕太阳行星绕太阳”的原子模的原子模型型 1909-1911年间,Rutherford(卢瑟福)用 粒子作穿透金箔实验,证明原子不是实体球,原子有原子核,直径约10-13cm左右,原子的质量几乎全部集中在原子核上,核带正电荷,电子绕核运动,提出原子结构
4、的“行星绕太阳”的模型。 根据这一模型,电子绕核运动时,将不断辐射电磁波,原子不能稳定存在。玻尔原子论玻尔原子论 1913年,Bohr综合了Planck的量子论、Einstein的光子学说和卢瑟福的原子模型,假定: 定态规则定态规则:原子有一系列定态,每一个定态有一相应的能量E,电子在这些定态的能级上绕核作圆周运动,不吸收也不辐射能量,处于稳定状态。电子作圆周运动的角动量M为: M= nh/2 (量子化条件) 频率规则:当电子由一个定态跃迁到另一个定态时,将吸收或发射光子,光子的频率为: E 为两个定态 的 能量差hE/推算电子绕核运动的半径和能量推算电子绕核运动的半径和能量根据玻尔的假设,氢
5、原子的电子稳定地绕核运动,其圆周运动的向心力与电子的核间的库仑引力的大小应相等:电子的总能量应为动能和位能(此处仅有吸引能)之和:reremvE02022842120224/rermvmrev0224根据量子化条件,电子轨道运动的角动量为2nhmvrM2222224rmhnv222220244rmhnmre)(92.522022022pmnanmehnr 092.52apmr当n=1时:)(16 .1318222204eVnnRnhmeE当n=1时,基态的能量为-13.6ev。12EEchh)8(82120422204nhmenhme)11(82122204nnhme)11(822212034
6、nnchme120341096788cmchmeRH(以氢的折合质量代入 m) 玻尔所得的RH计算值和归纳所得的实验值符合得很好,是Bohr模型的一大成就。 但是把Bohr模型应用到多电子原子时,计算结果却与实验值相差很远。原因是:玻尔虽然提出了原子能量、角动量量子化概念,但还未完全摒弃传统观念的束缚-认为电子运动也象宏观物体一样有确定的轨道,故它是旧量子论旧量子论。 因此,电子、原子等微观粒子需要用量子力学规律去描述。下面我们用量子力学方法处理原子结构。2.1单电子原子的单电子原子的Schrodinger方程及其解方程及其解-1- 单电子原子的Schrodinger方程单电子原子单电子原子:
7、核电荷数为Z,核外只有一个电子的体系。如H原子、He+、Li2+、Be3+等类氢离子。EVzyxm)(22222222定态薜定格方程 :EVm)2(22EH而单电子原子的哈密顿算符为:r4Zem2M2H022e22N2核动能算符电子动能算符位能222) Zz ()Yy ()Xx (rBore-Oppenheimer(玻恩(玻恩-奥本海末)奥本海末)近似近似-核固定近似核固定近似 由于核质量比电子质量大几千倍,电子速度比核速度快千倍以上,故核的动能比电子的动能小得多,在研究电子运动状态时,假定核不动,把核放在坐标原点。即核的动能可不考虑。这种近似处理称核固定近似核固定近似。 这样,哈密顿算符可简
8、化为:r4Zem2H022e2222zyxr电子绕核运动近似电子绕核运动近似eN实际上电子并不是绕原子核运动,而是绕原子的质量中心运动,原子核也是绕质量中心运动。re-电子与质量中心X的距离 M-核质量XrN -核与质量中心的距离 m-电子质量re与rN应满足以下关系:MrN=mre 和 r=rN+re 解得:rmMmr , rMmMrNe哈密顿算符为:r4Ze2H0222总角动量应为两个质点角动量( mvr )之和:总角动量=MVNrN + mVere=MrN2 +mre2 2rmMmM= r2 MmmM这相当于质量为 的电子以距离r绕核运动。(折合质量)当Mm时,m 因此,在精确度要求不很
9、高时,就说电子绕因此,在精确度要求不很高时,就说电子绕核运动,并假设核不动,且位于坐标原点核运动,并假设核不动,且位于坐标原点。所以哈密顿算符为:r4Zem2H0222Schrodinger方程的直角坐标形式方程的直角坐标形式在精确度要求不很高时,在核固定近似条件下在精确度要求不很高时,在核固定近似条件下,Schrodinger方程的直角坐标形式为:Er4Zem20222或Er4Ze)zyx(m2022222222222zyxr式中:由于r的形式很难实行变数分离,因而难以解薛定格方程,必须把方程转换成球坐标形式。rzemmHeNN022222422B: B: 根据波恩-奥本海默近似,简化哈密顿
10、算符为:rzemHe022242C: C: 单电子原子方程的直角坐标表示式为:),(),( 4),()(2022222222zyxEzyxrzezyxzyxmA:A:单电子原子中有二个粒子,其哈密顿算符为:单电子原子方程的直角坐标表示式2222222222cossinsincossinzyxzyxrrzryrx2222222111sinr)(sinsinr)rr (rr氢原子方程 为了进行变数分离,便于直接求解方程式,要进行直角坐标与球极坐标之间的变换。球极坐标与直角坐标的关系prM 球极坐标与笛卡儿坐标的关系因此,球坐标系中薛定谔方程形式为:Erzerrrrrrm 4sin1)(sinsin
11、1)(120222222222)(其中, r)dddrsinrddzdydxdv( 2将该式代入Schrodinger方程的球极坐标形式中,于是有)().(),()()()(),(YrRr;且令:sin1)(sinsin1),(182)()(12222222022ErmrmzerrRrrrR 式中等号左边只与r有关、右边只与有关。两边恒等,必须分别等于同一常数,设此常数为,则: 1 82)()(12222022ErmrmzerrRrrrR2.1.2 2.1.2 sin1)(sinsin1),(1222勒让德方程 上述三个方程分别叫做R(r)方程,()方程和()方程。此时波函数被分为三部分,分别
12、求解。注意三个方程的变量的变化范围。 22mSinSinSin(2)将 ,Y代入,整理得: 2221m(3)sin1)(sinsin1),(182)()(12222222022ErmrmzerrRrrrRErzerrrrrrm 4sin1)(sinsin1)(120222222222)().(),()()()(),(YrRr;且令: 82)()(12222022ErmrmzerrRrrrR 22mSinSinSin 2221mR(r)方程 ,Y()方程()方程变数分离法求变数分离法求Schrodinger方程的步骤方程的步骤 令(r,)=R(r)() (),代入Schrodinger方程中;
13、整理移项,让方程的一边只含r,方程的另一边只含、,令方程两边同时等于常数,从而分离出R方程和只含、的勒让德方程; 对勒让德方程整理移项,使方程一边只含,另一边只含,令方程两边等于常数m2,从而分离出、方程; 求R 、方程,得R(r)、() 、 () ; 让R、相乘, (r,)=R(r)() (),即得到体系的解: (r,)。0222mimmAe 210122,mkmmm由原方程可得:常系数二阶线性齐次方程,得通解为:常数A,m可通过归一化,单值性条件求得:21120Ad*归一化条件归一化条件单值性条件单值性条件2.1.3 2.1.3 其解为:mSinimCosemSinimCosemimmim
14、2212122121mimmimee2121这种解是复数形式的。由欧拉公式有它们的线性组合也是方程的解,由此得到方程的实函数解:msinmcos1121 210 iiee212111 210 22222121iiee 212122SinCos SinCos1111m = 0m = 1m = -1m = 2m = -2 表2.1.3a m0sin)(sinsin122kmdd由原方程得:根据二阶线性微分方程解法推得:k =l(l+1), l=0,1,2,m角量子数;恒有 l m, 对于确定的l,可取(2l+1)个m值;当对K值进行这种限制后,可得方程收敛解形式为:)(cosCP)(|m|lm,
15、l21212|)!m|l (|)!m|l (lC其中系数由归一化条件得:lmlmllmmlddlP) 1(coscos) !(2)cos1 ()(cos2|2/2|联属勒让得函数,0 ,01 ,01 ,122 ,02 ,122 ,233 ,023 ,123 ,23 ,32 .2 .3001262011321 04310211 5221 541 445304 28511321 0 5437l ml mblmC o sS inC o sS inC o sS inC o sS inS inC o sS inC o s表308S in当将k=l(l+1)代入方程后,进一步整理得:2200222404)
16、4(218nZenZemEen0) 1()4(2)(12002222RrllZeEmdrdRrdrdre联属拉盖尔方程通过求解,可以得到:这里n=1,2,3l+1 ;主量子数)(21)!1(2)!1()2()(122330,llnllnLennlnnZrR对于每一个n值均有相应径向波函数其中,20nZr lnlnnllllneddeddL1121212 000000320222302332022023013320220230032023012202300223001308143668143218273812362122221221Zr,Zr,Zr,Zr,Zr,Zr,l ,nerZZrRderZ
展开阅读全文