高等数学配套完整课件(上册).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学配套完整课件(上册).ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 配套 完整 课件 上册
- 资源描述:
-
1、高等数学配套完整课件高等数学配套完整课件(上册)上册)引引 言言一、什么是高等数学一、什么是高等数学 ?初等数学 研究对象为常量常量, 以静止观点研究问题.高等数学 研究对象为变量变量, 运动运动和辩证法辩证法进入了数学.数学中的转折点转折点是笛卡儿的变数变数.有了变数 , 运动运动进入了数学,有了变数,辩证法辩证法进入了数学 ,有了变数 , 微分和积分微分和积分也就立刻成为必要的了,而它们也就立刻产生. 恩格斯恩格斯笛卡儿 目录 上页 下页 返回 结束 1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分(上册)(下册)3. 向量代数与空间解析几何4. 无穷级数5. 常微分
2、方程主要内容主要内容多元微积分机动 目录 上页 下页 返回 结束 二、如何学习高等数学二、如何学习高等数学 ?1. 认识高等数学的重要性, 培养浓厚的学习兴趣.2. 学数学最好的方式是做数学.聪明在于学习聪明在于学习 , 天才在于积累天才在于积累 .学而优则用学而优则用 , 学而优则创学而优则创 .由薄到厚由薄到厚 , 由厚到薄由厚到薄 .马克思马克思 恩格斯恩格斯要辨证而又唯物地了解自然 ,就必须熟悉数学.一门科学, 只有当它成功地运用数学时,才能达到真正完善的地步 .第一节 目录 上页 下页 返回 结束 华罗庚华罗庚给出了几何问题的统一笛卡儿笛卡儿 (15961650)法国哲学家, 数学家
3、, 物理学家, 他 是解析几何奠基人之一 . 1637年他发表的几何学论文分析了几何学与 代数学的优缺点, 进而提出了 “ 另外 一种包含这两门科学的优点而避免其缺点的方法”, 从而提出了解析几何学的主要思想和方法, 恩格斯把它称为数学中的转折点.把几何问题化成代数问题 ,作图法,华罗庚华罗庚(19101985)我国在国际上享有盛誉的数学家.他在解析数论,自守函数论,高维数值积分等广泛的数学领域中,程,都作出了卓越的贡献 ,发表专著与学术论文近 300 篇.偏微分方多复变函数论,矩阵几何学, 典型群,他对青年学生的成长非常关心, 他提出治学之道是 “ 宽宽, 专专, 漫漫 ”, 即基础要宽,
4、专业要专, 要使自己的专业知识漫到其它领域. 1984年来中国矿业大学视察时给给师生题词: “ 学而优则用学而优则用, 学而优则创学而优则创 ”.第一章分析基础 函数 极限 连续 研究对象 研究方法 研究桥梁函数与极限 第一章 二、映射 三、函数 一、集合第一节机动 目录 上页 下页 返回 结束 映射与函数元素 a 属于集合 M , 记作元素 a 不属于集合 M , 记作一、一、 集合集合1. 定义及表示法定义 1. 具有某种特定性质的事物的总体称为集合.组成集合的事物称为元素.不含任何元素的集合称为空集 , 记作 . Ma( 或Ma) .Ma注: M 为数集 *M表示 M 中排除 0 的集
5、;M表示 M 中排除 0 与负数的集 .机动 目录 上页 下页 返回 结束 表示法表示法:(1) 列举法:按某种方式列出集合中的全体元素 .例: 有限集合naaaA,21niia1自然数集,2,1,0Nnn(2) 描述法: xM x 所具有的特征例: 整数集合 ZxNx或Nx有理数集qpQ,N,Zqp p 与 q 互质实数集合 Rx x 为有理数或无理数开区间 ),(xbabxa闭区间 ,xbabxa机动 目录 上页 下页 返回 结束 )(aa ),(Uxa ),xbabxa ,(xbabxa无限区间 ),xaxa ,(xb bx ),(xRx点的 邻域a ),(xaaxa xaxax0其中,
6、 a 称为邻域中心 , 称为邻域半径 .半开区间去心 邻域左 邻域 :, ),(aa右 邻域 :. ),(aa机动 目录 上页 下页 返回 结束 是 B 的子集 , 或称 B 包含 A ,2. 集合之间的关系及运算集合之间的关系及运算定义2 .则称 A.BA若BA,AB 且则称 A 与 B 相等,.BA 例如 ,ZNQZRQ显然有下列关系 :;) 1 (AA;AA BA)2(CB 且CA , ,A若Ax,Bx设有集合,BA记作记作必有机动 目录 上页 下页 返回 结束 AcABB定义定义 3 . 给定两个集合 A, B, 并集 xBAAx交集 xBAAxBx且差集 xBAAxBx且定义下列运算
7、:ABBA余集)(ABBABcA其中直积 ),(yxBA,AxBy特例:RR记2R为平面上的全体点集ABABBABA机动 目录 上页 下页 返回 结束 Bx或二、二、 映射映射1. 映射的概念 某校学生的集合学号的集合按一定规则查号某班学生的集合某教室座位的集合按一定规则入座机动 目录 上页 下页 返回 结束 引例1. 引例引例2.xxysinRxRy引例3.oxy1QP1),(22yxyxC11), 0(yyY(点集)(点集)CP点向 y 轴投影YQ投影点xysinxy oxy1x2xxxysin机动 目录 上页 下页 返回 结束 定义定义4.设 X , Y 是两个非空集合, 若存在一个对应
8、规则 f , 使得,Xx有唯一确定的Yy与之对应 , 则称 f 为从 X 到 Y 的映射, 记作.:YXf元素 y 称为元素 x 在映射 f 下的 像 , 记作).(xfy 元素 x 称为元素 y 在映射 f 下的 原像 .集合 X 称为映射 f 的定义域 ;Y 的子集)(XfXxxf)(称为 f 的 值域 .注意: 1) 映射的三要素 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 . XYfxy机动 目录 上页 下页 返回 结束 对映射YXf:若YXf)(, 则称 f 为满射; XYf)(Xf若,2121xxXxx有 )()(21xfxf
9、则称 f 为单射;若 f 既是满射又是单射, 则称 f 为双射 或一一映射. XY)(Xff引例2, 3机动 目录 上页 下页 返回 结束 引例2引例2例例1.三角形)(三角形集合海伦公式bcaS面积),0(例2. 如图所示,Sxyoxey x),0 x对应阴影部分的面积),0S则在数集),0自身之间定义了一种映射(满射)例3. 如图所示,xyo),(yxrcosrx sinry 2R),(yxf)2,0),0),(r:f则有(满射) (满射)机动 目录 上页 下页 返回 结束 X (数集 或点集 ) 说明说明:在不同数学分支中有不同的惯用 X ( ) Y (数集)机动 目录 上页 下页 返回
10、 结束 f f 称为X 上的泛函X ( ) X f f 称为X 上的变换 R f f 称为定义在 X 上的为函数映射又称为算子. 名称. 例如, 2. 逆映射与复合映射逆映射与复合映射(1) 逆映射的定义 定义: 若映射)(:DfDf为单射, 则存在一新映射,)(:1DDff使习惯上 ,Dxxfy, )(的逆映射记成)(,)(1Dfxxfy例如, 映射, 0,(,2xxy其逆映射为,xy),0 x)(DfDf1f,)(, )(1xyfDfy其中,)(yxf称此映射1f为 f 的逆映射 .机动 目录 上页 下页 返回 结束 (2) 复合映射机动 目录 上页 下页 返回 结束 1Dfg手电筒DD2
11、D2D引例. 复合映射 定义. Dxg)()(Dgxgu1Duf)(ufy 则当1)(DDg由上述映射链可定义由 D 到 Y 的复, )(xgfy .),(Dxxgf设有映射链记作)(1DfY 合映射 ,时,或)(1DfY )(ufy )(xgf1DDx)(xgu gfgf )(Dg机动 目录 上页 下页 返回 结束 注意: 构成复合映射的条件 1)(DDg不可少.以上定义也可推广到多个映射的情形.定义域三、函数三、函数1. 函数的概念 定义4. 设数集,RD则称映射R:Df为定义在D 上的函数 , 记为Dxxfy, )( f ( D ) 称为值域 函数图形: ),(yxC Dx, )(xfy
12、 xy) ,(baDabxy)(DfD机动 目录 上页 下页 返回 结束 自变量因变量DxfDxxfyyDfy),()(对应规则)(值域)(定义域)例如, 反正弦主值xxfyarcsin)(, 1, 1D,)(22Df 定义域 对应规律的表示方法: 解析法、图象法、列表法使表达式及实际问题都有意义的自变量集合.定义域值域xyoxy xxf)(又如, 绝对值函数0,xx0,xx定义域RD值 域),0)(Df机动 目录 上页 下页 返回 结束 例例4. 已知函数 1,110,2)(xxxxxfy求 )(21f及, )(1tf解:21212)(f2)(1tf10t,11t1t,2t时0t函数无定义并
13、写出定义域及值域 .定义域 ),0D值 域 ),0)(Df机动 目录 上页 下页 返回 结束 2. 函数的几种特性函数的几种特性设函数, )(Dxxfy且有区间.DI (1) 有界性,Dx,0M使,)(Mxf称 )(xf, Ix,0M使,)(Mxf称 )(xf说明: 还可定义有上界、有下界、无界 (见上册 P11 )(2) 单调性为有界函数.在 I 上有界. ,Dx使若对任意正数 M , 均存在 ,)(Mxf则称 f ( x ) 无界.称 为有上界称 为有下界,)(,Mxf),(,xfM 当,21Ixx21xx 时, )()(21xfxf若称 )(xf为 I 上的, )()(21xfxf若称
14、)(xf为 I 上的单调增函数 ;单调减函数 .xy1x2x机动 目录 上页 下页 返回 结束 xyoxx(3) 奇偶性奇偶性,Dx且有,Dx若, )()(xfxf则称 f (x) 为偶函数;若, )()(xfxf则称 f (x) 为奇函数. 说明: 若)(xf在 x = 0 有定义 ,. 0)0(f)(xf为奇函数时,则当必有例如,2)(xxeexfyxch 偶函数xyoxexexych双曲余弦 记机动 目录 上页 下页 返回 结束 xyo又如,2)(xxeexfy奇函数xexexyshxsh双曲正弦 记再如,xxychshxxxxeeee奇函数oyx11xth双曲正切 记xyth机动 目录
15、 上页 下页 返回 结束 (4) 周期性周期性,0,lDx且,Dlx)()(xflxf则称)(xf为周期函数 ,to)(tf22xo2y2若称 l 为周期 ( 一般指最小正周期 ).周期为 周期为2注: 周期函数不一定存在最小正周期 .例如, 常量函数Cxf)(狄里克雷函数)(xfx 为有理数x 为无理数, 1,0机动 目录 上页 下页 返回 结束 3. 反函数与复合函数反函数与复合函数(1) 反函数的概念及性质若函数)(:DfDf为单射, 则存在逆映射DDff)(:1习惯上,Dxxfy, )(的反函数记成)(,)(1Dfxxfy称此映射1f为 f 的反函数 .机动 目录 上页 下页 返回 结
16、束 其反函数(减)(减) .1) yf (x) 单调递增,)(1存在xfy且也单调递增 性质: 2) 函数)(xfy 与其反函数)(1xfy的图形关于直线xy 对称 .例如 ,),(,xeyx对数函数),0(,lnxxy互为反函数 ,它们都单调递增, 其图形关于直线xy 对称 .)(xfy )(1xfyxy ),(abQ),(baPxyo机动 目录 上页 下页 返回 结束 指数函数(2) 复合函数 1),(Duufy,),(Dxxgu1)(DDg且则Dxxgfy, )(设有函数链称为由, 确定的复合函数 , 机动 目录 上页 下页 返回 结束 复合映射的特例 u 称为中间变量. 注意: 构成复
17、合函数的条件 1)(DDg不可少. 例如, 函数链 :,arcsinuy ,122xu函数,12arcsin2xyDx,1231,23但函数链22,arcsinxuuy不能构成复合函数 .可定义复合机动 目录 上页 下页 返回 结束 两个以上函数也可构成复合函数. 例如, 0,uuy可定义复合函数:,2cotxy ,) 12( ,2(kkxZn02cot,22xkxk时),2, 1, 0(,cotkkvvu),(,2xxv4. 初等函数初等函数(1) 基本初等函数幂函数、 指数函数、 对数函数、 三角函数、 反三角函数(2) 初等函数由常数及基本初等函数否则称为非初等函数 . 例如 ,2xy
18、y0,xx0,xx并可用一个式子表示的函数 ,经过有限次四则运算和复合步骤所构成 ,称为初等函数 .可表为故为初等函数.又如 , 双曲函数与反双曲函数也是初等函数 .( 自学, P17 P21 )机动 目录 上页 下页 返回 结束 非初等函数举例:符号函数xysgn当 x 0,1当 x = 0,0当 x N 时,SAn用其内接正 n 边形的面积总有刘徽 目录 上页 下页 返回 结束 定义定义: 自变量取正整数的函数称为数列,记作)(nfxn或.nxnx称为通项(一般项) .若数列nx及常数 a 有下列关系 :,0,N正数当 n N 时, 总有记作此时也称数列收敛 , 否则称数列发散 .几何解释
19、 :aaa)(axan)(Nn 即),(axn)(Nn axnnlim或)(naxn1Nx2Nxaxn则称该数列nx的极限为 a ,机动 目录 上页 下页 返回 结束 例如例如,1,43,32,21nn1nnxn)(1n,) 1(,43,34,21,21nnnnnxnn1) 1()(1n,2,8,4,2nnnx2)(n,) 1( ,1,1,11n1) 1(nnx趋势不定收 敛发 散机动 目录 上页 下页 返回 结束 例例1. 已知,) 1(nnxnn证明数列nx的极限为1. 证证: 1nx1) 1(nnnn1,0欲使,1nx即,1n只要1n因此 , 取, 1N则当Nn 时, 就有1) 1(nn
20、n故1) 1(limlimnnxnnnn机动 目录 上页 下页 返回 结束 例例2. 已知,) 1() 1(2nxnn证明.0limnnx证证:0nx0) 1() 1(2nn2) 1(1n11n, ) 1 ,0(欲使,0nx只要,11n即n取, 11N则当Nn 时, 就有,0nx故0) 1() 1(limlim2nxnnnn,0111nnnx故也可取1N也可由2) 1(10nnx. 11N 与 有关, 但不唯一.不一定取最小的 N .说明说明: 取11N机动 目录 上页 下页 返回 结束 例例3. 设,1q证明等比数列,112nqqq证证:0nx01nq, ) 1 ,0(欲使,0nx只要,1n
21、q即,lnln) 1(qn亦即因此 , 取qNlnln1, 则当 n N 时, 就有01nq故0lim1nnq.lnln1qn的极限为 0 . 1nq机动 目录 上页 下页 返回 结束 23baab22abnabax二、收敛数列的性质二、收敛数列的性质证证: 用反证法.axnnlim及,limbxnn且. ba 取,2ab因,limaxnn故存在 N1 , ,2abnax从而2banx同理, 因,limbxnn故存在 N2 , 使当 n N2 时, 有2banx1. 收敛数列的极限唯一收敛数列的极限唯一.使当 n N1 时, 2ba2ab2ab假设22abnabbxnbax223ab,2abn
22、bx从而2banx矛盾.因此收敛数列的极限必唯一.则当 n N 时, ,max21NNN 取故假设不真 !nx满足的不等式机动 目录 上页 下页 返回 结束 例例4. 证明数列),2, 1() 1(1nxnn是发散的. 证证: 用反证法.假设数列nx收敛 , 则有唯一极限 a 存在 .取,21则存在 N ,2121axan但因nx交替取值 1 与1 , ),(2121aa内,而此二数不可能同时落在21a21aa长度为 1 的开区间 使当 n N 时 , 有因此该数列发散 .机动 目录 上页 下页 返回 结束 2. 收敛数列一定有界收敛数列一定有界.证证: 设,limaxnn取,1,N则当Nn
23、时, 从而有nxaaxna1取 ,max21NxxxMa1则有. ),2,1(nMxn由此证明收敛数列必有界.说明说明: 此性质反过来不一定成立 . 例如,1)1(n虽有界但不收敛 .aaxn)(, 1axn有数列机动 目录 上页 下页 返回 结束 3. 收敛数列的保号性收敛数列的保号性.若,limaxnn且0a,NN则Nn 当时, 有0nx, )0(. )0(证证: 对 a 0 , 取,2a,NN则,时当Nn axn2anx02aaax2a2a推论推论: 若数列从某项起0nx,limaxnn且0a则)0(. )0(用反证法证明)机动 目录 上页 下页 返回 结束 *,axkn4. 收敛数列的
24、任一子数列收敛于同一极限收敛数列的任一子数列收敛于同一极限 .证证: 设数列knx是数列nx的任一子数列 .若,limaxnn则,0,N当 Nn 时, 有axn现取正整数 K , 使,NnK于是当Kk 时, 有knKnN从而有由此证明 .limaxknk*NKnNxKnx机动 目录 上页 下页 返回 结束 由此性质可知 , 若数列有两个子数列收敛于不同的极限 ,例如, ),2, 1() 1(1nxnn; 1lim12kkx1lim2kkx发散 !则原数列一定发散 .机动 目录 上页 下页 返回 结束 说明说明: 三、极限存在准则三、极限存在准则由此性质可知 , 若数列有两个子数列收敛于不同的极
25、限 ,例如, ),2, 1() 1(1nxnn; 1lim12kkx1lim2kkx发散 !夹逼准则; 单调有界准则; 柯西审敛准则 .则原数列一定发散 .机动 目录 上页 下页 返回 结束 说明说明: azynnnnlimlim)2(1. 夹逼准则夹逼准则 (准则1) (P49),2, 1() 1 (nzxynnnaxnnlim证证: 由条件 (2) ,0,1N当1Nn 时,ayn当2Nn 时,azn令,max21NNN 则当Nn 时, 有,ayan,azan由条件 (1)nnnzxya a即,axn故 .limaxnn,2N机动 目录 上页 下页 返回 结束 例例5. 证明11211lim
展开阅读全文