高等数学课件:D1-10连续函数性质(第一章).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学课件:D1-10连续函数性质(第一章).ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 课件 D1_10 连续函数 性质 第一章
- 资源描述:
-
1、第十节一一、最值定理、最值定理 二、介值定理二、介值定理 *三、一致连续性三、一致连续性 机动 目录 上页 下页 返回 结束 闭区间上连续函数的性质 第一章 注意注意: 若函数在开区间上连续,结论不一定成立 .一一、最值定理、最值定理定理定理1.1.在闭区间上连续的函数即: 设, ,)(baCxfxoyab)(xfy 12则, ,21ba使)(min)(1xffbxa)(max)(2xffbxa值和最小值.或在闭区间内有间断 在该区间上一定有最大(证明略)点 ,机动 目录 上页 下页 返回 结束 例如例如,)1,0(,xxy无最大值和最小值 xoy1121,31,110,1)(xxxxxxfx
2、oy1122也无最大值和最小值 又如又如, 机动 目录 上页 下页 返回 结束 ,)(baxf在因此bxoya)(xfy 12mM推论推论. 由定理 1 可知有, )(max,xfMbax)(min,xfmbax, ,bax故证证: 设, ,)(baCxf,)(Mxfm有上有界 .二、介值定理二、介值定理定理定理2. ( 零点定理 ), ,)(baCxf至少有一点, ),(ba且使xyoab)(xfy .0)(f0)()(bfaf机动 目录 上页 下页 返回 结束 ( 证明略 )在闭区间上连续的函数在该区间上有界. 定理定理3. ( 介值定理 ) 设 , ,)(baCxf且,)(Aaf,)(B
3、ABbf则对 A 与 B 之间的任一数 C ,一点, ),(ba证证: 作辅助函数Cxfx)()(则,)(baCx 且)()(ba)(CBCA0故由零点定理知, 至少有一点, ),(ba使,0)(即.)(Cf推论推论:Abxoya)(xfy BC使.)(Cf至少有在闭区间上的连续函数 必取得介于最小值与最大值之间的任何值 .机动 目录 上页 下页 返回 结束 例例1. 证明方程01423 xx一个根 .证证: 显然, 1 ,014)(23Cxxxf又,01)0(f02) 1 (f故据零点定理, 至少存在一点, ) 1 ,0(使,0)(f即01423说明说明:,21x,0)(8121f内必有方程
展开阅读全文