书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型高等数学课件:第六次课-极限存在准则与重要极限(第一章).ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2057886
  • 上传时间:2022-01-26
  • 格式:PPT
  • 页数:26
  • 大小:1.45MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学课件:第六次课-极限存在准则与重要极限(第一章).ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学 课件 第六 极限 存在 准则 重要 第一章
    资源描述:

    1、三、两个重要极限三、两个重要极限 二、极限存在准则二、极限存在准则第六节机动 目录 上页 下页 返回 结束 极限存在准则及两个重要极限 第一章 一、函数极限与数列极限的关系一、函数极限与数列极限的关系一、一、 函数极限与数列极限的关系函数极限与数列极限的关系定理定理1. Axfxx)(lim0:nx,0 xxn有定义,),(0nxxnAxfnn)(lim为确定起见 , 仅讨论的情形.0 xx 有)(nxfxnx机动 目录 上页 下页 返回 结束 定理定理1.Axfxx)(lim0 :nx)(,0nnxfxx 有定义, )(0nxxn且设,)(lim0Axfxx即,0,0当,00时xx有.)(

    2、Axf:nx)(,0nnxfxx 有定义 , 且, )(0nxxn对上述 ,Nn 时, 有,00 xxn于是当Nn 时.)( Axfn故Axfnn)(lim可用反证法证明. (略).)(limAxfnn有证:证:当 xyA,N“ ”“ ”0 x机动 目录 上页 下页 返回 结束 定理定理1.Axfxx)(lim0 :nx)(,0nnxfxx 有定义, )(0nxxn且.)(limAxfnn有说明说明: 此定理常用于判断函数极限不存在 .法法1 找一个数列:nx,0 xxn, )(0nxxn且不存在 .)(limnnxf使法法2 找两个趋于0 x的不同数列nx及,nx使)(limnnxf)(li

    3、mnnxf)(x)(nx机动 目录 上页 下页 返回 结束 例例1. 证明xx1sinlim0不存在 .证证: 取两个趋于 0 的数列nxn21及221nxn有nnx1sinlimnnx1sinlim由定理 1 知xx1sinlim0不存在 .),2, 1(n02sinlimnn1)2sin(lim2nn机动 目录 上页 下页 返回 结束 二、极限存在准则二、极限存在准则夹逼准则机动 目录 上页 下页 返回 结束 单调有界准则柯西审敛准则 (略)azynnnnlimlim)2(1. 数列极限的夹逼准则数列极限的夹逼准则 (准则1) (P49),2, 1() 1 (nzxynnnaxnnlim证

    4、证: 由条件 (2) ,0,1N当1Nn 时,ayn当2Nn 时,azn令,max21NNN 则当Nn 时, 有,ayan,azan由条件 (1)nnnzxya a即,axn故 .limaxnn,2N机动 目录 上页 下页 返回 结束 例例2. 证明11211lim222nnnnnn证证: 利用夹逼准则 .nnnnn2221211nnn2222nn且nnnn22limnn11lim122limnnn211limnn1nnlimnnnn22212111由机动 目录 上页 下页 返回 结束 2. 函数极限存在的夹逼准则函数极限存在的夹逼准则定理定理2.,),(0时当xxAxhxgxxxx)(lim

    5、)(lim00, )()(xhxg)(xfAxfxx)(lim0)0( Xx)(x)(x)(x且( 利用定理1及数列的夹逼准则可证 )机动 目录 上页 下页 返回 结束 3. 单调有界数列必有极限单调有界数列必有极限 ( 准则2 ) ( P52 ) Mxxxxnn121mxxxxnn121)(limMaxnn)(limmbxnnnx1nxM1x2xxmnx1nx1x2xx( 证明略 )ab机动 目录 上页 下页 返回 结束 例例3. 设, ),2, 1()1 (1nxnnn证明数列nx极限存在 . (P52P54)证证: 利用二项式公式 , 有nnnx)1 (11nn 1! 121!2) 1(

    6、nnn31!3)2)(1(nnnnnnnnnnn1!) 1() 1(11) 1(1!1nn) 1(2n) 1(1nn)1(1!21n)1(1!31n)1(2n机动 目录 上页 下页 返回 结束 11nx) 1(1!1nn) 1(2n) 1(1nn)1(1!21n)1(1!31n)1(2n111nx)1(11!21n)1)(1(1211!31nn)1()1)(1(11211! ) 1(1nnnnn大大 大大 正正),2, 1(1nxxnn11)1 (1nnnx!21!31!1n又比较可知机动 目录 上页 下页 返回 结束 根据准则 2 可知数列nx记此极限为 e ,ennn)1 (lim1 e

    7、为无理数 , 其值为590457182818284. 2e即有极限 .原题 目录 上页 下页 返回 结束 11)1 (1nnnx!21!31!1n1121221121n又32121111n1213n此式即为重要极限故极限存在,例例3.3.设 )(211nnnxaxx),2,1(n,0a,01x, 且求.limnnx解:解:设Axnnlim则由递推公式有)(21AaAAaA)(211nnnxaxxnxnxaannxx1)1(212nxa)1(21aa1数列单调递减有下界,,01x故axnnlim利用极限存在准则,0nx机动 目录 上页 下页 返回 结束 思考与练习思考与练习已知),2, 1(21

    8、,111nxxxnn, 求nnxlim时, 下述作法是否正确? 说明理由.设,limaxnn由递推式两边取极限得aa211a不对不对!此处nnxlim机动 目录 上页 下页 返回 结束 1sincosxxx圆扇形AOB的面积三、三、 两个重要极限两个重要极限 1sinlim. 10 xxx证证: 当即xsin21x21xtan21亦即)0(tansin2xxxx),0(2x时,)0(2 x, 1coslim0 xx1sinlim0 xxx显然有AOB 的面积AOD的面积DCBAx1oxxxcos1sin1故有注注注 目录 上页 下页 返回 结束 当20 x时xxcos1cos102sin22x

    9、222x22x0)cos1(lim0 xx注注例例2. 求.tanlim0 xxx解解: xxxtanlim0 xxxxcos1sinlim0 xxxsinlim0 xxcos1lim01例例3. 求.arcsinlim0 xxx解解: 令,arcsin xt 则,sintx 因此原式tttsinlim0 1lim0tttsin1机动 目录 上页 下页 返回 结束 nnnRcossinlim2Rn例例4. 求.cos1lim20 xxx解解: 原式 =2220sin2limxxx212121例例5. 已知圆内接正 n 边形面积为证明: .lim2RAnn证证: nnAlimnnnnRnAcos

    10、sin22R说明说明: 计算中注意利用1)()(sinlim0)(xxx20sinlimx2x2x21机动 目录 上页 下页 返回 结束 2.exxx)1(lim1证证: 当0 x时, 设, 1nxn则xx)1 (111)1 (nnnn)1 (11nnn)1 (lim11 limn111)1 (nn111ne11)1 (limnnn1)1(lim11)(nnnneexxx)1(lim1机动 目录 上页 下页 返回 结束 当x, ) 1( tx则,t从而有xxx)1 (lim1) 1(11)1 (limttt) 1(1)(limtttt11)1 (limttt)1 ()1(lim11tttte故

    11、exxx)1 (lim1说明说明: 此极限也可写为ezzz1)1 (lim0时, 令机动 目录 上页 下页 返回 结束 例例6. 求.)1 (lim1xxx解解: 令,xt则xxx)1 (lim1ttt )1 (lim1 1limttt)1 (1e1说明说明 :若利用,)1 (lim)()(1)(exxx机动 目录 上页 下页 返回 结束 则 原式111)1 (limexxxlimx例例7. 求.)cos(sinlim11xxxx解解: 原式 =2)cos(sinlim211xxxx2)sin1 (lim2xxx)sin1(2xexx22sin机动 目录 上页 下页 返回 结束 x2sin1的

    12、不同数列内容小结内容小结1. 函数极限与数列极限关系的应用(1) 利用数列极限判别函数极限不存在 (2) 数列极限存在的夹逼准则法法1 找一个数列:nx,0 xxn)(0nxxn且使)(limnnxf法法2 找两个趋于0 xnx及 ,nx使)(limnnxf)(limnnxf不存在 .函数极限存在的夹逼准则机动 目录 上页 下页 返回 结束 2. 两个重要极限1sinlim) 1 (0e)11(lim)2(或e1)1(lim0注注: 代表相同的表达式机动 目录 上页 下页 返回 结束 11limsin或思考与练习思考与练习填空题填空题 ( 14 );_sinlim. 1xxx;_1sinlim. 2xxx;_1sinlim. 30 xxx;_)11 (lim. 4nnn0101e第七节 目录 上页 下页 返回 结束

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学课件:第六次课-极限存在准则与重要极限(第一章).ppt
    链接地址:https://www.163wenku.com/p-2057886.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库