书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型高等数学(同济大学)课件上第4-1不定积分.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2057853
  • 上传时间:2022-01-26
  • 格式:PPT
  • 页数:26
  • 大小:654.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学(同济大学)课件上第4-1不定积分.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学 同济大学 课件 _1 不定积分
    资源描述:

    1、第四章微分法:)?()( xF积分法:)()?(xf互逆运算不定积分 二、二、 基本积分表基本积分表 三、不定积分的性质三、不定积分的性质一、一、 原函数与不定积分的概念原函数与不定积分的概念第一节机动 目录 上页 下页 返回 结束 不定积分的概念与性质 第四四章 一、一、 原函数与不定积分的概念原函数与不定积分的概念引例引例: 一个质量为 m 的质点,的作tAFsin下沿直线运动 ,).(tv因此问题转化为: 已知,sin)(tmAtv求?)(tv在变力试求质点的运动速度机动 目录 上页 下页 返回 结束 根据牛顿第二定律, 加速度mFta)(tmAsin定义定义 1 . 若在区间 I 上定

    2、义的两个函数 F (x) 及 f (x)满足)()(xfxF,d)()(dxxfxF或在区间 I 上的一个原函数 .则称 F (x) 为f (x) 如引例中, tmAsin的原函数有 ,cos tmA, 3cos tmA问题问题: 1. 在什么条件下, 一个函数的原函数存在 ?2. 若原函数存在, 它如何表示 ? 定理定理1. ,)(上连续在区间若函数Ixf上在则Ixf)( 存在原函数 .(下章证明下章证明)初等函数在定义区间上连续初等函数在定义区间上有原函数初等函数在定义区间上有原函数机动 目录 上页 下页 返回 结束 ,)()(的一个原函数是若xfxF定理定理 2. 的所有则)(xf原函数

    3、都在函数族CxF)( C 为任意常数 ) 内 .证证: 1)的原函数是)()(xfCxF)(CxF)(xF)(xf,的任一原函数是设)()()2xfx)()(xfx 又知)()(xfxF )()(xFx)()(xFx0)()(xfxf故0)()(CxFx)(0为某个常数C即0)()(CxFx属于函数族.)(CxF机动 目录 上页 下页 返回 结束 即定义定义 2. )(xf在区间 I 上的原函数全体称为Ixf在)(上的不定积分,d)(xxf其中 积分号积分号;)(xf 被积函数被积函数;xxfd)( 被积表达式被积表达式.x 积分变量积分变量;(P183)若, )()(xfxF则CxFxxf)

    4、(d)( C 为任意常数 )C 称为积分常数积分常数不可丢不可丢 !例如,xexdCexxx d2Cx 331xxdsinCx cos记作机动 目录 上页 下页 返回 结束 不定积分的几何意义不定积分的几何意义:)(xf的原函数的图形称为)(xfxxfd)(的图形的所有积分曲线组成)(xf的平行曲线族.yxo0 x机动 目录 上页 下页 返回 结束 的积分曲线积分曲线 . 例例1. 设曲线通过点( 1 , 2 ) , 且其上任一点处的切线斜率等于该点横坐标的两倍, 求此曲线的方程.解解: xy2xxyd2Cx 2所求曲线过点 ( 1 , 2 ) , 故有C2121C因此所求曲线为12 xy机动

    5、 目录 上页 下页 返回 结束 yxo)2, 1 (ox例例2. 质点在距地面0 x处以初速0v力, 求它的运动规律. 解解: 取质点运动轨迹为坐标轴, 原点在地面, 指向朝上 ,)0(0 xx )(txx 质点抛出时刻为,0t此时质点位置为初速为,0 x设时刻 t 质点所在位置为, )(txx 则)(ddtvtx(运动速度)tvtxdddd22g(加速度).0v机动 目录 上页 下页 返回 结束 垂直上抛 , 不计阻 先由此求)(tv 再由此求)(tx先求. )(tv,ddgtv由知ttvd)()(g1Ct g,)0(0vv由,01vC 得0)(vttvg再求. )(txtvttxd)()(

    6、0g20221Ctvtg,)0(0 xx由,02xC 得于是所求运动规律为00221)(xtvttxg由)(ddtvtx,0vt g知机动 目录 上页 下页 返回 结束 故ox)0(0 xx )(txx xdd) 1 (xxfd)()(xf二、二、 基本积分表基本积分表 (P186)从不定积分定义可知:dxxfd)(xxfd)(或Cxd)2()(xF)(xF或Cd)(xF)(xF利用逆向思维利用逆向思维xkd) 1 ( k 为常数)Cxk xx d)2(Cx111xxd)3(Cx ln时0 x机动 目录 上页 下页 返回 结束 ) 1( )ln()ln(xxx121d)4(xxCx arcta

    7、nxxdcos)6(Cx sinxx2cosd)8(xxdsec2Cx tan或Cx cotarc21d)5(xxCx arcsin或Cx cosarcxxdsin)7(Cx cosxx2sind)9(xxdcsc2Cx cot机动 目录 上页 下页 返回 结束 xxxdtansec)10(Cx secxxxdcotcsc)11(Cxcscxexd)12(Cexxaxd)13(Caaxln2shxxeexCx chxxdch)15(Cx shxxdsh)14(2chxxeex机动 目录 上页 下页 返回 结束 例例3. 求求.d3xxx解解: 原式 =xxd34134Cx313例例4. 求.d

    8、cossin22xxx解解: 原式=xxdsin21Cx cos21134xC机动 目录 上页 下页 返回 结束 三、不定积分的性质三、不定积分的性质xxfkd)(. 1xxgxfd)()(. 2推论推论: 若, )()(1xfkxfinii则xxfkxxfiniid)(d)(1xxfkd)(xxgxxfd)(d)()0( k机动 目录 上页 下页 返回 结束 例例5. 求.d)5(2xexx解解: 原式 =xexxd)25)2()2ln()2(eex2ln25xCexx2ln512ln2C机动 目录 上页 下页 返回 结束 例例6. 求求.dtan2xx解解: 原式 =xxd) 1(sec2

    9、xxxddsec2Cxx tan例例7. 求.d)1 (122xxxxx解解: 原式 =xxxxxd)1 ()1 (22xxd112xxd1xarctanCx ln机动 目录 上页 下页 返回 结束 例例8. 求求.d124xxx解解: 原式 =xxxd11) 1(24xxxxd11) 1)(1(222221dd) 1(xxxxCxxxarctan313机动 目录 上页 下页 返回 结束 内容小结内容小结1. 不定积分的概念 原函数与不定积分的定义 不定积分的性质 基本积分表 (见P 186)2. 直接积分法:利用恒等变形恒等变形, 及 基本积分公式基本积分公式进行积分 .常用恒等变形方法分项

    10、积分加项减项利用三角公式 , 代数公式 ,积分性质积分性质机动 目录 上页 下页 返回 结束 ,2chxxeex2shxxeex思考与练习思考与练习1. 证明 xexeexxxch,sh,221.shch的原函数都是xxex2. 若则的原函数是,)(xfex d)(ln2xxfx(P191题4)提示提示:xe)()(xexfxeln)(ln xfx1Cx 221机动 目录 上页 下页 返回 结束 提示提示:3. 若)(xf是xe的原函数 , 则xxxfd)(ln提示提示: 已知xexf)(0)(Cexfx01)(lnCxxfxCxxxf021)(lnCxCxln10机动 目录 上页 下页 返回

    11、 结束 4. 若)(xf;sin1)(xA;sin1)(xB的导函数为,sin x则)(xf的一个原函数是 ( ) .;cos1)(xC.cos1)(xD提示提示: 已知xxfsin)(求即B)()(xfxsin)( ?或由题意,cos)(1Cxxf其原函数为xxfd)(21sinCxCx机动 目录 上页 下页 返回 结束 5. 求下列积分:.cossind)2(;)1 (d) 1 (2222xxxxxx提示提示:)1 (1)1 (1) 1 (2222xxxxxxxx2222cossincossin1)2(xx22cscsecxx22cossin22111xx)(2x2x机动 目录 上页 下页 返回 结束 6. 求不定积分解:解:.d113xeexxxeexxd113xeexxd1) 1() 1(2xxeexeexxd) 1(2Cxeexx221机动 目录 上页 下页 返回 结束 7. 已知已知22221d1d1xxBxxAxxx求 A , B .解解: 等式两边对 x 求导, 得221xx22211xxAxA21xB2212)(xxABA120ABA2121BA机动 目录 上页 下页 返回 结束 作业作业P190 1 (5) , (12) , (14) , (20) , (23) , (25) , (26) ; 2 ; 3第二节 目录 上页 下页 返回 结束

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学(同济大学)课件上第4-1不定积分.ppt
    链接地址:https://www.163wenku.com/p-2057853.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库