书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型高等数学(同济大学)课件上第4习题课.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2057806
  • 上传时间:2022-01-26
  • 格式:PPT
  • 页数:22
  • 大小:622KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学(同济大学)课件上第4习题课.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学 同济大学 课件 习题
    资源描述:

    1、习题课一、一、 求不定积分的基本方法求不定积分的基本方法机动 目录 上页 下页 返回 结束 二、几种特殊类型的积分二、几种特殊类型的积分不定积分的计算方法 第四四章 一、一、 求不定积分的基本方法求不定积分的基本方法1. 直接积分法直接积分法通过简单变形, 利用基本积分公式和运算法则求不定积分的方法 .2. 换元积分法换元积分法xxfd)( 第一类换元法第一类换元法tttfd)()( 第二类换元法(注意常见的换元积分类型) (代换: )(tx机动 目录 上页 下页 返回 结束 3. 分部积分法分部积分法vuxvud使用原则:1) 由v易求出 v ;2) xvud比xvud好求 .一般经验: 按

    2、“反, 对, 幂, 指 , 三” 的顺序,排前者取为 u , 排后者取为.v计算格式: 列表计算xvud机动 目录 上页 下页 返回 结束 xvund) 1(xvuvunnd)()()1()(nnvuvu xvund) 1( )2() 1()(nnnvuvuvuxvunnd) 1() 1(1多次分部积分的多次分部积分的 规规 律律机动 目录 上页 下页 返回 结束 )2()1()( nnnvuvuvuxvund)2( 快速计算表格:)(ku)1(knvuuu )(nu)1( nv)(nv)1( nvvn) 1()1( nuv1) 1(n特别特别: 当 u 为 n 次多项式时,0)1(nu计算大

    3、为简便 . 例例1. 求.d4932xxxxx解解: 原式xxxxxd233222xxxd)(1)(23232xx2323232)(1)(dln1xaaaxxdlndCx3ln2ln)arctan(32机动 目录 上页 下页 返回 结束 例例2. 求.d15)1ln(22xxxx解解:215)1ln(2xx原式5)1ln(d2xx21xxxxxd)1 (212221dxx325)1ln(2xxC23机动 目录 上页 下页 返回 结束 分析分析: 5)1ln(d2xx例例3. 求.dcos1sinxxxx解解 :原式xxxxxd2cos22cos2sin222tandxxxxd2tanCxx2t

    4、an分部积分机动 目录 上页 下页 返回 结束 例例4. 设,)(2xyxy解解: 令, tyx求积分.d31xyxxyxy2)(即txy,123ttx,12tty而ttttxd) 1()3(d2222 1原式ttttd) 1()3(2222123tt132tttttd12Ct1ln221Cyx1)(ln221机动 目录 上页 下页 返回 结束 例例5. 求.darctanxeexx解解:xearctan原式xedxxeearctanxexeexxd12xxeearctanxeeexxxd1)1 (222xxeearctanxCex)1 (ln221机动 目录 上页 下页 返回 结束 例例6.

    5、 求.d)2(23xexxx解解: 取,23xxuxev2)4(23 xx132xx660)(ku)4(kvxe2xe221xe241xe281xe2161xe2 原式)2(321 xx) 13(241xx681Cxxxex)7264(232816161CxxaxaexPxkndcossin)(机动 目录 上页 下页 返回 结束 说明说明: 此法特别适用于如下类型的积分: 例例7. 设,dsecxxInn证证:证明递推公式:)2(12tansec1122nInnxxnInnnxInn2secxn 2secxxxnntansecsec)2(3xxdtanxxntansec2xxxnnd) 1(s

    6、ecsec)2(22xxntansec2nIn)2( 2)2(nInxxdsec2xtan)2(12tansec1122nInnxxnInnn机动 目录 上页 下页 返回 结束 例例8. 求.d1xx解解: 设1)(xxF1x,1x1x,1x则)(xF1,1221xCxx1,2221xCxx因)(xF连续 , , ) 1 ()1 ()1 (FFF得21211121CC221121CC记作C得xxd1)(xF1,21221xCxx1,21221xCxx,) 1(221Cx,) 1(221Cx利用 机动 目录 上页 下页 返回 结束 例例9. 设 解解:)(xF为)(xf的原函数,时时当当0 x,

    7、2sin)()(2xxFxf有有且,1)0(F,0)(xF求. )(xf由题设, )()(xfxF则,2sin)()(2xxFxF故xxFxFd)()(xxd2sin2xxd24cos1即CxxxF4sin)(412,1)0(F, 1)0(2FC0)(xF, 因此14sin)(41xxxF故)()(xFxf14sin2sin412xxx又机动 目录 上页 下页 返回 结束 二、几种特殊类型的积分二、几种特殊类型的积分1. 一般积分方法一般积分方法有理函数分解多项式及部分分式之和指数函数有理式指数代换三角函数有理式万能代换简单无理函数三角代换根式代换机动 目录 上页 下页 返回 结束 2. 需要

    8、注意的问题需要注意的问题(1) 一般方法不一定是最简便的方法 ,(2) 初等函数的原函数不一定是初等函数 ,要注意综合使用各种基本积分法, 简便计算 . 因此不一定都能积出.机动 目录 上页 下页 返回 结束 例如例如 , ,d2xex,dsinxxx,dsin2xx,dln1xx,1d4 xx,d13xx, ) 10(dsin122kxxk例例10. 求.1d632xxxeeex解解: 令,6xet 则,ln6tx txtdd6原式原式ttttt)1 (d623tttt) 1)(1(d621331362ttttt dtln61ln3t) 1ln(232tCt arctan3Ceeexxxx6

    9、36arctan3) 1ln() 1ln(323机动 目录 上页 下页 返回 结束 例例11. 求.dsincossincos3xxxxx解解: 令xxsincos3xBAxBAsin)(cos)(比较同类项系数3 BA1 BA, 故2, 1BA 原式xxxxxsincos)sind(cos2dCxxxsincosln说明说明: 此技巧适用于形为xxdxcxbxadsincossincos的积分.)sin(cos)sin(cosxxBxxAxbxasincos令)sincos()sincos(xdxcBxdxcA机动 目录 上页 下页 返回 结束 例例12.解解:xxbxaxIdsincoss

    10、in1求因为.dsincoscos2xxbxaxI及12IbIaxxbxaxbxadsincossincos1Cx12IaIbxxbxaxaxbdsincossincos)sincosd(xbxa2sincoslnCxbxaCxbxaabxbaI)sincosln(1221CxbxabaxbaI)sincosln(1222机动 目录 上页 下页 返回 结束 例例13. 求不定积分.dsin)cos2(1xxx解解: )cos(xu 令令原式 uuud) 1)(2(12) 1)(2(12uuuA21uB1uC31A61B21C2ln31u1ln61uCu1ln21)2ln(cos31x)cos1

    11、ln(61xCx) 1ln(cos21机动 目录 上页 下页 返回 结束 xxxxdsin)cos2(sin2例例14.)()sin()sin(dkbabxaxxI求xbxaxd)sin()sin()()sin(bxax)sin(1ba xbxaxbad)sin()sin()sin(1)sin(ax )cos(bx )cos(ax )sin(bx)sin(1ba xbxbxd)sin()cos(xaxaxd)sin()cos(Caxbxba)sin(ln)sin(ln)sin(1Caxbxba)sin()sin(ln)sin(1机动 目录 上页 下页 返回 结束 解解:I =例例15. 求nnnbxaxxI11)()(d解解:nbxaxbxaxxI)()(d( n 为自然数)令nbxaxt则,bxaxtnxbxbattnnd)(d212dttbanCtabn1Caxbxabnnxbxbatttnnd)(1d2)(dd)(bxaxxttban机动 目录 上页 下页 返回 结束 作业作业P222 6 , 9 , 18 , 19 , 28 , 31 , 38 , 39 机动 目录 上页 下页 返回 结束

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学(同济大学)课件上第4习题课.ppt
    链接地址:https://www.163wenku.com/p-2057806.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库