书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型高等数学(同济大学)课件下第08习题课.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2057769
  • 上传时间:2022-01-26
  • 格式:PPT
  • 页数:27
  • 大小:605.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学(同济大学)课件下第08习题课.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学 同济大学 课件 下第 08 习题
    资源描述:

    1、 第八章 习题课习题课机动 目录 上页 下页 返回 结束 一、一、 基本概念基本概念 二、多元函数微分法二、多元函数微分法 三、多元函数微分法的应用三、多元函数微分法的应用 多元函数微分法多元函数微分法一、一、 基本概念基本概念连续性 偏导数存在 方向导数存在可微性1. 多元函数的定义、极限 、连续 定义域及对应规律 判断极限不存在及求极限的方法 函数的连续性及其性质2. 几个基本概念的关系机动 目录 上页 下页 返回 结束 思考与练习思考与练习机动 目录 上页 下页 返回 结束 1. 讨论二重极限yxyxyx00lim解法解法101lim1100 xyyx原式解法解法2 令, xky 01l

    2、im0kkxx原式解法解法3 令,sin,cosryrx0sincossincoslim0rr原式时, 下列算法是否正确是否正确?分析分析:yxyxyx00lim解法101lim1100 xyyx解法2 令, xky 01lim0kkxx原式机动 目录 上页 下页 返回 结束 此法第一步排除了沿坐标轴趋于原点的情况, 此法排除了沿曲线趋于原点的情况. 时例如xxy21lim2230 xxxx原式此时极限为 1 .第二步 未考虑分母变化的所有情况, , 1,111xyxxy时例如解法3 令,sin,cosryrx0sincossincoslim0rr原式机动 目录 上页 下页 返回 结束 此法忽

    3、略了 的任意性,时当4, 0r)sin(2sincossincossincos4rr极限不存在 !由以上分析可见, 三种解法都不对, 因为都不能保证自变量在定义域内以任意方式趋于原点 .特别要注意, 在某些情况下可以利用极坐标求极限, 但要注意在定义域内 r , 的变化应该是任意的. 同时还可看到, 本题极限实际上不存在 .0,00,)(),(2222232222yxyxyxyxyxf提示提示: 利用 ,222yxyx2122)(41),(yxyxf)0,0(0),(lim00fyxfyx故f 在 (0,0) 连续;, 0), 0()0 ,(yfxf又因0)0 , 0()0 , 0(yxff所

    4、以知在点(0,0) 处连续且偏导数存在 , 但不可微 . 2. 证明证明:机动 目录 上页 下页 返回 结束 而)0 , 0(f,00时,当yx22)0 , 0()()(yxf22222)()( )()(yxyx0所以 f 在点(0,0)不可微 !232222)()( )()(yxyx机动 目录 上页 下页 返回 结束 例例1. 已知求出 的表达式. ),(yxf解法解法1 令,yxu),(vuf)(uvu即)(),(xyxyxf,)0,(xxf) 1(),(yxyxf解法解法2 )()(),(yxyxyxyxyxf)(),(xyxyxf以下与解法1 相同., )(),(22yxyxyxyxf

    5、,)0(xxf,)()(vuyvux2121,则xx )(且,yxv)()()(241241uvuvu机动 目录 上页 下页 返回 结束 二、多元函数微分法二、多元函数微分法显示结构隐式结构1. 分析复合结构(画变量关系图)自变量个数 = 变量总个数 方程总个数自变量与因变量由所求对象判定2. 正确使用求导法则“分段用乘,分叉用加,单路全导,叉路偏导”注意正确使用求导符号3. 利用一阶微分形式不变性机动 目录 上页 下页 返回 结束 例例2. 设其中 f 与F分别具,0),(, )(zyxFyxfxz解法解法1 方程两边对 x 求导, 得xzdd)0(23FFfxxzdd1F 23FFfx 1

    6、 32FFfx12FFfxffx221FffFxfFx有一阶导数或偏导数, 求fxfxzxyfxdddd132ddddFxzFxyFf fx)dd1 (xy.ddxzxyFdd20dd3xzF(99 考研)机动 目录 上页 下页 返回 结束 解法解法2 0),(, )(zyxFyxfxz方程两边求微分, 得化简消去 即可得yd.ddxzyF d20d3zFyfxd 0dz)d(dddyxfxxfz 0ddd321zFyFxFxfxfd)(xF d1机动 目录 上页 下页 返回 结束 例例3. .设),(zyxfu 有二阶连续偏导数, 且,sin2txz , )ln(yxt求.,2yxuxu解解

    7、:uzyxtxyxxu1f(3 ftxsin2tx cos2)yxu2 12f(13 ftx cos2) 32f 33f)1cos(2yxtx)cossin2(2yxtxtx 3fyxtx1cos222)( yxxyxt1sin)(yx 1cos tyx 1yx 1机动 目录 上页 下页 返回 结束 练习题练习题1. 设函数 f 二阶连续可微, 求下列函数的二阶偏导数.2yxz),()3()()2()() 1 (222xyxfzxyxfzxyfxz2. 同济(下) P73 题12机动 目录 上页 下页 返回 结束 解答提示解答提示: )() 1 (2xyfxz : )()2(2xyxfzxyx

    8、yfxyz2)(2xyfyz2 fxyxyfxy )1(22222fxy 232fy 2yxz2yxz2 fy2)(22xyfxy 2)1(22xyfxy22第 1 题机动 目录 上页 下页 返回 结束 2222fxyyxz) (2xy21f 2222fxy : ),()3(2xyxfz 22fxyyz机动 目录 上页 下页 返回 结束 xvuxuvP73 题12 设求,sin,cosvuzveyvexuuyzxz,zvuyxyxxz得由,sin,cosveyvexuu得由,vuz vveuvexuudsindcosd提示提示:vveuveyuudcosdsind机动 目录 上页 下页 返回

    9、结束 yvuyuvyz利用行列式解出 du, dv :veveveveveyvexuuuuuuucossinsincoscosdsinddxuyxdd veucosveusin机动 目录 上页 下页 返回 结束 yu代入即得 ;xzxvyxvdddveusinveucosyvxvxu及将代入即得 .yzyvyu及将t dtteyxezxxyx0sin, 2),(zyxfu 有连续的一阶偏导数 , )(xyy 及)(xzz 分别由下两式确定求.ddxu又函数答案答案:321)sin()(1ddfzxzxefxyfxux( 2001考研 )机动 目录 上页 下页 返回 结束 3. 设三、多元函数微

    10、分法的应用三、多元函数微分法的应用1 1.在几何中的在几何中的应用应用求曲线在切线及法平面 (关键: 抓住切向量) 求曲面的切平面及法线 (关键: 抓住法向量) 2. 极值与最值问题极值与最值问题 极值的必要条件与充分条件 求条件极值的方法 (消元法, 拉格朗日乘数法) 求解最值问题3. 在微分方程变形等中的应用在微分方程变形等中的应用 最小二乘法机动 目录 上页 下页 返回 结束 例例4.4.在第一卦限作椭球面1222222czbyax的切平面,使其在三坐标轴上的截距的平方和最小, 并求切点. 解解: 设, 1),(222222czbyaxzyxF切点为),(000zyxM则切平面的法向量为

    11、,220ax,220by202czM即zczybyxax2020201220220220czbyax1切平面方程0)(2020zzcz)(2020yyby )(2020 xxax机动 目录 上页 下页 返回 结束 ),(zyxFFFn 问题归结为求222222zcybxas在条件1222222czbyax下的条件极值问题 .设拉格朗日函数222222zcybxaF1222222czbyax)0,0,0(zyx机动 目录 上页 下页 返回 结束 切平面在三坐标轴上的截距为,02xa,02yb02zc令2222xaxaFx022ax0222222byybybFy0222222czzczcFz122

    12、2222czbyaxcbaaaxcbabbycbaccz由实际意义可知cbacccbabbcbaaaM,为所求切点 .机动 目录 上页 下页 返回 结束 唯一驻点例例5.22yxz求旋转抛物面与平面之间的最短距离.解:解:2261zyxd设为抛物面上任一点, 则 P ),(zyxP22yxz的距离为022zyx问题归结为(min)22(2zyx约束条件:022zyx目标函数:22 zyx作拉氏函数)()22(),(222yxzzyxzyxF机动 目录 上页 下页 返回 结束 到平面)()22(),(222yxzzyxzyxF.81,41,41zyx令22yxz解此方程组得唯一驻点02)22(2

    13、yzyxFy0)2)(22(2zyxFz02)22(2xzyxFx由实际意义最小值存在 ,241414161mind647故机动 目录 上页 下页 返回 结束 上求一点 , 使该点处的法线垂直于练习题:练习题:1. 在曲面yxz ,093zyx并写出该法线方程 .提示提示: 设所求点为, ),(000zyx则法线方程为000zzyyxx利用113100 xy得3,1,3000zyx平面0y0 x1000yxz 法线垂直于平面点在曲面上机动 目录 上页 下页 返回 结束 2. 在第一卦限内作椭球面1222222czbyax的切平面使与三坐标面围成的四面体体积最小,并求此体积.提示提示: 设切点为, ),(000zyx) 1(222222czbyaxzyxF用拉格朗日乘数法可求出. ),(000zyx则切平面为所指四面体围体积1202020czzbyyaxx00022261zyxcbaV V 最小等价于 f ( x, y, z ) = x y z 最大, 故取拉格朗日函数 例4 目录 上页 下页 返回 结束 (见例见例4)作业作业 P73 5,6,10, 15,17 机动 目录 上页 下页 返回 结束

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学(同济大学)课件下第08习题课.ppt
    链接地址:https://www.163wenku.com/p-2057769.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库