书签 分享 收藏 举报 版权申诉 / 100
上传文档赚钱

类型地质数据处理课件:5-概率与概率分布.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2057517
  • 上传时间:2022-01-26
  • 格式:PPT
  • 页数:100
  • 大小:996KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《地质数据处理课件:5-概率与概率分布.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    地质 数据处理 课件 概率 分布
    资源描述:

    1、概率与概率分布洪金益中南大学地学院地质数据处理基础5第五章 概率与概率分布第一节第一节 概率基础概率基础第二节第二节 随机变量及其分布随机变量及其分布学习目标1.了解随机事件的概念、事件的关系和运算2.理解概率的定义,掌握概率的性质和运算法则3.理解随机变量及其分布,计算各种分布的概率4.计算分布的概率一一. 随机事件及其概率随机事件及其概率二二. 概率的性质与运算法则概率的性质与运算法则随机事件的几个基本概念试 验1.在相同条件下,对事物或现象所进行的观察;2.例如:掷一枚骰子,观察其出现的点数;3.试验具有以下特点:可以在相同的条件下重复进行;每次试验的可能结果可能不止一个,但试验的所有可

    2、能结果在试验之前是确切知道的;在试验结束之前,不能确定该次试验的确切结果。事件的概念1.事件:事件:随机试验的每一个可能结果(任何样本点集合)例如:掷一枚骰子出现的点数为32.随机事件:随机事件:每次试验可能出现也可能不出现的事件例如:掷一枚骰子可能出现的点数3.必然事件必然事件:每次试验一定出现的事件,用表示例如:掷一枚骰子出现的点数小于74.不可能事件不可能事件:每次试验一定不出现的事件,用表示例如:掷一枚骰子出现的点数大于6事件与样本空间1. 基本事件一个不可能再分的随机事件例如:掷一枚骰子出现的点数2. 样本空间一个试验中所有基本事件的集合,用表示例如:在掷枚骰子的试验中,1,2,3,

    3、4,5,6在投掷硬币的试验中,正面,反面事件的关系和运算(事件的包含)A事件的关系和运算(事件的并或和)B事件的关系和运算(事件的交或积)A事件的关系和运算(互斥事件)A事件的关系和运算(事件的逆)A事件的关系和运算(事件的差)A事件的关系和运算(事件的性质) 设A、B、C为三个事件,则有1. 交换律:AB=BA AB=BA2. 结合律:A(BC)=(AB)C A(BC) =(AB) C3. 分配律:A(BC)=(AB)(AC) A(BC)=(AB)(AC)事件的概率事件的概率1. 事件A的概率是对事件A在试验中出现的可能性大小的一种度量2. 表示事件A出现可能性大小的数值3. 事件A的概率表

    4、示为P(A)4. 概率的定义有:古典定义、统计定义和主观概率定义事件的概率例如,投掷一枚硬币,出现正面和反面的频率,随着投掷次数 n 的增大,出现正面和反面的频率稳定在1/2左右概率的古典定义如果某一随机试验的结果有限,而且各个结果在每次试验中出现的可能性相同,则事件A发生的概率为该事件所包含的基本事件个数 m 与样本空间中所包含的基本事件个数 n 的比值,记为概率的古典定义(实例) 某钢铁公司所属三个工厂的职工人数如下表。从该公司中随机抽取1人,问: (1)该职工为男性的概率 (2)该职工为炼钢厂职工的概率某钢铁公司所属企业职工人数某钢铁公司所属企业职工人数工厂工厂男职工男职工女职工女职工合

    5、计合计炼钢厂炼钢厂炼铁厂炼铁厂轧钢厂轧钢厂4000320090018001600600620048001500合计合计8500400012500概率的古典定义(计算结果) 解:解:(1)用A 表示“抽中的职工为男性”这一事件;A为全公司男职工的集合;基本空间为全公司职工的集合。则概率的统计定义 在相同条件下进行n次随机试验,事件A出现 m 次,则比值 m/n 称为事件A发生的频率。随着n的增大,该频率围绕某一常数P上下摆动,且波动的幅度逐渐减小,取向于稳定,这个频率的稳定值即为事件A的概率,记为:概率的统计定义 (实例) 某工厂为节约用电,规定每天的用电量指标为1000度。按照上个月的用电记录

    6、,30天中有12天的用电量超过规定指标,若第二个月仍没有具体的节电措施,试问该厂第一天用电量超过指标的概率。 解:解:上个月30天的记录可以看作是重复进行了30次试验,试验A表示用电超过指标出现了12次。根据概率的统计定义有:主观概率定义1.对一些无法重复的试验,确定其结果的概率只能根据以往的经验人为确定;2.概率是一个决策者对某事件是否发生,根据个人掌握的信息对该事件发生可能性的判断。 例如,我我认为今后23年内中国有色金属市场价格是一个缓慢盘升的时期。概率的性质与运算法则概率的性质1.非负性对任意事件A,有 0 P 12.规范性必然事件的概率为1;不可能事件的概率为0。即P ( ) = 1

    7、; P ( ) = 03.可加性若A与B互斥,则P ( AB ) = P ( A ) + P ( B )推广到多个两两互斥事件A1,A2,An,有 P ( A1A2 An) = P ( A1 ) + P (A2 ) + + P (An )概率的加法法则 法则一法则一1. 两个互斥事件之和的概率,等于两个事件概率之和。设A和B为两个互斥事件,则 P ( AB ) = P ( A ) + P ( B )2. 事件A1,A2,An两两互斥,则有 P ( A1A2 An) = P ( A1 ) + P (A2 ) + + P (An )概率的加法法则(实例)概率的加法法则 法则二法则二 对任意两个随机

    8、事件A和B,它们和的概率为两个事件分别概率的和减去两个事件交的概率,即 P ( AB ) = P ( A ) + P ( B ) - P ( AB ) 概率的加法法则(实例)条件概率与独立事件条件概率 在事件B已经发生的条件下,求事件A发生的概率,称这种概率为事件B发生条件下事件A发生的条件概率,记为 条件概率的图示概率的乘法公式1. 用来计算两事件交的概率;2. 以条件概率的定义为基础; 设A、B为两个事件,若P(B)0,则P(AB)=P(B)P(A|B),或P(AB)=P(A)P(B|A)概率的乘法公式(实例)事件的独立性1.一个事件的发生与否并不影响另一个事件发生的概率,则称两个事件独立

    9、2.若事件A与B独立,则P(B|A)=P(B), P(A|B)=P(A) 3.此时概率的乘法公式可简化为 P(AB)=P(B)P(B)4.推广到n个独立事件,有 P(A1 A2 An)=P(A1)P(A2) P(An) 事件的独立性(实例)全概公式 设事件A1,A2,An 两两互斥, A1+A2+ An=(满足这两个条件的事件组称为一个完备事件组),且P(Ai)0(i=1,2, ,n),则对任意事件B,有全概公式(实例)贝叶斯公式(逆概公式)1.与全概公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因;2.设 n 个 事 件 A1, A2, , An 两 两 互 斥 ,

    10、A1+A2+ An= (满足这两个条件的事件组称为一个完备事件组),且P(Ai)0(i=1,2, ,n),则:贝叶斯公式(实例)一一. 随机变量的概念随机变量的概念2离散型随机变量的概率分布离散型随机变量的概率分布3连续型随机变量的概率分布连续型随机变量的概率分布随机变量的概念随机变量的概念1. 一次试验的结果的数值性描述2. 一般用 X、Y、Z 来表示3. 例如: 投掷两枚硬币出现正面的数量4. 根据取值情况的不同分为离散型随机变量和连续型随机变量离散型随机变量1.随机变量 X 取有限个值或所有取值都可以逐个列举出来 X1 , X2,2.以确定的概率取这些不同的值3.离散型随机变量的一些例子

    11、试验试验随机变量随机变量可能的取值可能的取值抽查抽查100个个产品产品一家餐馆营业一天一家餐馆营业一天电脑公司一个月的销售电脑公司一个月的销售销售一辆汽车销售一辆汽车取到次品的个数取到次品的个数顾客数顾客数销售量销售量顾客性别顾客性别0,1,2, ,1000,1,2, 0,1, 2,男性为男性为0,女性为女性为1连续型随机变量1.随机变量 X 取无限个值2.所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任意点3.连续型随机变量的一些例子试验试验随机变量随机变量可能的取值可能的取值抽查一批电子元件抽查一批电子元件新建一座住宅楼新建一座住宅楼测量一个产品的测量一个产品的长度长度使用寿命使

    12、用寿命(小时小时)半年后工程完成的百分比半年后工程完成的百分比测量误差测量误差(cm)X 00 X 100X 0离散型随机变量的概率分布离散型随机变量的概率分布1.列出离散型随机变量X的所有可能取值2.列出随机变量取这些值的概率3.通常用下面的表格来表示X = xix1 ,x2 , ,xnP(X =xi)=pip1 ,p2 , ,pn4. P(X =xi)=pi称为离散型随机变量的概率函数pi00离散型随机变量的概率分布(实例)【例【例】如规定打靶中域得3分,中域得2分,中域得1分,中域外得0分。今某射手每100次射击,平均有30次中域,55次中域,10次中,5次中域外。则考察每次射击得分为0

    13、,1,2,3这一离散型随机变量,其概率分布为X = xi0 1 2 3P(X=xi) pi0.05 0.10 0.55 0.30离散型随机变量的概率分布(01分布)1. 一个离散型随机变量X只取两个可能的值例如,男性用 1表示,女性用0表示;合格品用 1 表示,不合格品用0表示2. 列出随机变量取这两个值的概率离散型随机变量的概率分布(01分布实例)【例【例】已知一批产品的次品率为p0.05,合格率为q=1-p=1-0.5=0.95。并指定废品用1表示,合格品用0表示。则任取一件为废品或合格品这一离散型随机变量,其概率分布为X = xi0 1P(X=xi)=pi0.05 0.95离散型随机变量

    14、的概率分布(均匀分布)1. 一个离散型随机变量取各个值的概率相同2. 列出随机变量取值及其取值的概率3. 例如,投掷一枚骰子,出现的点数及其出现各点的概率离散型随机变量的概率分布(均匀分布实例)【例【例】投掷一枚骰子,出现的点数是个离散型随机变量,其概率分布为X = xi1 2 3 4 5 6P(X=xi)=pi1/6 1/6 1/6 1/6 1/6 1/6离散型随机变量的数学期望和方差离散型随机变量的数学期望1.在离散型随机变量X的一切可能取值的完备组中,各可能取值xi与其取相对应的概率pi乘积之和;2.描述离散型随机变量取值的集中程度;3.计算公式为:离散型随机变量的方差1.随机变量X的每

    15、一个取值与期望值的离差平方和的数学期望,记为D(X)2.描述离散型随机变量取值的分散程度3.计算公式为离散型随机变量的方差(实例)【例【例】投掷一枚骰子,出现的点数是个离散型随机变量,其概率分布为如下。计算数学期望和方差X = xi1 2 3 4 5 6P(X =xi)=pi1/6 1/6 1/6 1/6 1/6 1/6几种常见的离散型概率分布常见的离散型概率分布超几何分布超几何分布离散型随机变离散型随机变量的概率分布量的概率分布泊松分布泊松分布二项分布二项分布二项试验(贝努里试验)1.二项分布与贝努里试验有关2.贝努里试验具有如下属性试验包含了n 个相同的试验每次试验只有两个可能的结果,即“

    16、成功”和“失败”出现“成功”的概率 p 对每次试验结果是相同的;“失败”的概率 q 也相同,且 p + q = 1试验是相互独立的试验“成功”或“失败”可以计数二项分布1.进行 n 次重复试验,出现“成功”的次数的概率分布称为二项分布2.设X为 n 次重复试验中事件A出现的次数,X 取 x 的概率为二项分布1.显然, 对于PX=x 0, x =1,2,n,有2.同样有3.当 n = 1 时,二项分布化简为二项分布的数学期望和方差1. 二项分布的数学期望为 E ( X ) np2. 方差为 D ( X ) npq二项分布(实例)泊松分布1. 用于描述在一指定时间范围内或在一定的长度、面积、体积之

    17、内每一事件出现次数的分布2. 泊松分布的例子一个矿山在一年内发生的安全事故次数在一条成矿带内找到某种成因类型的矿床的个数泊松概率分布函数 给定的时间间隔、长度、面积、体积内“成功”的平均数e = 2.71828 x 给定的时间间隔、长度、面积、体积内“成功”的次数泊松概率分布的期望和方差1. 泊松分布的数学期望为 E ( X ) = 2. 方差为 D ( X ) = 泊松分布(实例)泊松分布(作为二项分布的近似)1.当试验的次数 n 很大,成功的概率 p 很小时,可用泊松分布来近似地计算二项分布的概率,即连续型随机变量的概率分布连续型随机变量的概率分布指数分布指数分布连续型随机变连续型随机变量

    18、的概率分布量的概率分布正态分布正态分布均匀分布均匀分布其他分布其他分布连续型随机变量的概率分布1. 连续型随机变量可以取某一区间或整个实数轴上的任意一个值2. 它取任何一个特定的值的概率都等于03. 不能列出每一个值及其相应的概率4. 通常研究它取某一区间值的概率5. 用数学函数的形式和分布函数的形式来描述概率密度函数1. 设X为一连续型随机变量,x 为任意实数,X的概率密度函数记为f(x),它满足条件概率密度函数 密度函数 f(x)表示X 的所有取值 x 及其频数f(x)概率密度函数 在平面直角坐标系中画出f(x)的图形,则对于任何实数 x1 x2,P(x1 X x2)是该曲线下从x1 到

    19、x2的面积xab分布函数1.连续型随机变量的概率也可以用分布函数F(x)来表示2.分布函数定义为分布函数与密度函数的图示1. 密度函数曲线下的面积等于12. 分布函数是曲线下小于 x0 的面积连续型随机变量的期望和方差1. 连续型随机变量的数学期望为2. 方差为均匀分布均匀分布1.若随机变量X的概率密度函数为称X在区间a ,b上均匀分布2.数学期望和方差分别为xf(x)ba正态分布正态分布的重要性1.描述连续型随机变量的最重要的分布2.可用于近似离散型随机变量的分布 例如: 二项分布3.经典统计推断的基础概率密度函数f(x) = 随机变量 X 的频数 = 总体方差 =3.14159; e =

    20、2.71828x = 随机变量的取值 (- x 0;2. 正态曲线的最高点在均值,它也是分布的中位数和众数;3. 正态分布是一个分布族,每一特定正态分布通过均值的标准差来区分。 4. 曲线f(x)相对于均值对称,尾端向两个方向无限延伸,且理论上永远不会与横轴相交;5. 正态曲线下的总面积等于1;6. 随机变量的概率由曲线下的面积给出。 和 对正态曲线的影响xCAB正态分布的概率标准正态分布的重要性1.一般的正态分布取决于均值和标准差 ;2.计算概率时 ,每一个正态分布都需要有自己的正态概率分布表,这种表格是无穷多的;3.若能将一般的正态分布转化为标准正态分布,计算概率时只需要查一张表。标准正态

    21、分布函数2. 标准正态分布的概率密度函数1.任何一个一般的正态分布,可通过下面的线性变换转化为标准正态分布3. 标准正态分布的分布函数标准正态分布标准正态分布表的使用1.将一个一般的转换为标准正态分布;2.计算概率时 ,查标准正态概率分布表;3.对于负的 x ,可由 (-x) x得到;4.对于标准正态分布,即XN(0,1),有P (a X b) b aP (|X| a) 2 a 15.对于一般正态分布,即XN( , ),有标准化的例子 P(5 X 6.2) 标准化的例子P(2.9 X 7.1) 标准正态分布标准正态分布正态分布(实例)正态分布(实例)二项分布的正态近似二项分布的正态近似1.当n

    22、 很大时,二项随机变量X近似服从正态分布Nnp , np(1-p)2.对于一个二项随机变量X,当n很大时,求 P(x1Xx2)时可用正态分布近似为为什么概率是近似的二项分布的正态近似(实例)小 结1.定义试验、结果、事件、样本空间、概率;定义试验、结果、事件、样本空间、概率;2.描述和使用概率的运算法则;描述和使用概率的运算法则;3.定义和解释随机变量及其分布;定义和解释随机变量及其分布;4.计算随机变量的数学期望和方差;计算随机变量的数学期望和方差;5.计算离散型随机变量的概率和概率分布;计算离散型随机变量的概率和概率分布;6.计算连续型随机变量的概率;计算连续型随机变量的概率;7.用正态分布近似二项分布;用正态分布近似二项分布;8.计算分布的概率。计算分布的概率。结结 束束

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:地质数据处理课件:5-概率与概率分布.ppt
    链接地址:https://www.163wenku.com/p-2057517.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库