电磁学第一章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电磁学第一章.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁学 第一章
- 资源描述:
-
1、1第一章第一章 静电场静电场 1静电现象2库仑定律 3电场强度4高斯定理5电势,静电力的功第二章第二章 静电场中的导体和电介质静电场中的导体和电介质1静电平衡,电场中的导体空腔2电容及电容器3电介质的极化4极化强度矢量和极化电荷5有介质时的静电场方程6电场的能量和能量密度第三章第三章 稳恒电流稳恒电流1电流和电流密度2电流的连续性方程 3欧姆定律,焦耳定律4电源和电动势5含源电路的欧姆定律 6基尔霍夫定律2第第1 1章章 静止电荷的电场静止电荷的电场电磁学电磁学静电场静电场 相对于观察者为静止的电荷所激发的电场为静电场相对于观察者为静止的电荷所激发的电场为静电场 1、 静电场的基本特性;静电场
2、的基本特性; 2、引入描述电场的的基本物理量、引入描述电场的的基本物理量电场强度和电势;电场强度和电势; 3、在库仑定律和场强叠加原理的基础上建立高斯定理和场、在库仑定律和场强叠加原理的基础上建立高斯定理和场 强环路定理;强环路定理; 4、 讨论电场强度和电势之间的关系。讨论电场强度和电势之间的关系。41.1 电荷电荷1.3 电场和电场强度电场和电场强度1.5 电通量电通量 高斯定理高斯定理1.2 库仑定律与叠加原理库仑定律与叠加原理1.4 静止的点电荷的电场及其叠加静止的点电荷的电场及其叠加1.6 利用高斯定理求静电场的分布利用高斯定理求静电场的分布补充:补充:高斯定理的微分形式高斯定理的微
3、分形式目目 录录1.7 电势,静电力的功电势,静电力的功51.1 电荷电荷m密立根密立根(R.A.Millikan)带电油滴实验带电油滴实验 ( 1906 1917 ,1923年诺贝尔物理奖)年诺贝尔物理奖)2、电荷是量子化电荷是量子化(quantization)的的基本电荷基本电荷 e =1.60217733(49) 10-19C1、电荷只有正电荷只有正、负两种负两种电磁现象归因于电荷及其运动电磁现象归因于电荷及其运动m宏观电磁学宏观电磁学电荷值连续电荷值连续电子(质子)是自然界带有最小电荷量的粒电子(质子)是自然界带有最小电荷量的粒子。任何带电体或微观粒子所带的电荷量都子。任何带电体或微观
4、粒子所带的电荷量都是电子(质子)电荷量的整数倍。是电子(质子)电荷量的整数倍。63、电荷守恒电荷守恒:在宏观和微观上在宏观和微观上,电荷总量守恒。电荷总量守恒。4、有电荷就有质量有电荷就有质量 静质量为零的粒子,例如光子,只能是电中静质量为零的粒子,例如光子,只能是电中性的。性的。点电荷:点电荷: 理想模型理想模型, 若带电体的线度若带电体的线度引力:引力:强力强力电磁力电磁力弱力弱力引力引力 原子核中的核子(质子、中子)靠强力吸原子核中的核子(质子、中子)靠强力吸引,库仑排斥很弱。引,库仑排斥很弱。宏观物体靠分子、原子间的库仑力维系。宏观物体靠分子、原子间的库仑力维系。12二、二、电力的叠加
5、原理电力的叠加原理 实验表明:实验表明:两个点电荷之间的作用力并不因两个点电荷之间的作用力并不因第三个点电荷的存在而改变。第三个点电荷的存在而改变。在电磁场的量子效应中,经典叠加原理不成立。在电磁场的量子效应中,经典叠加原理不成立。 两个以上的点电荷对一个点电荷的作用力,两个以上的点电荷对一个点电荷的作用力,等于各个点电荷单独存在时对该点电荷作用力等于各个点电荷单独存在时对该点电荷作用力的矢量和的矢量和iiFF库仑定律和静电力的叠加原理,原则上可以库仑定律和静电力的叠加原理,原则上可以解决静电学的全部问题。解决静电学的全部问题。 在Ox轴的原点O处有一固定的、电量为Q(Q0)的点电荷,在xl处
6、有一固定的、电量为2Q的点电荷。今有一正试验电荷q0放在x轴上x0的位置。并设斥力为正,吸引力为负。 (1)当q0的位置限制在Ox轴上变化时,求q0的受力平衡位置,并讨论平衡的稳定性; (2)试定性地画出试验电荷q0所受的合力F与q在Ox轴上的位置x的关系图线。作业:作业: 在正方形的四个顶点分别有电量为Q的固定点电荷,在正方形对角线交点上放置一个质量为m、电量为q的自由点电荷。将q沿某一对角线移动一个很小的距离,证明q将作简谐振动, 并求振动周期。151.3 电场和电场强度电场和电场强度检验电荷检验电荷(静止静止)q0定义定义电场强度:电场强度:0qFE 静止或运动静止或运动任意电荷分任意电
7、荷分布布F测受力测受力惯性系,点惯性系,点 p(x,y,z)任意电场中,某点的电场强度任意电场中,某点的电场强度E是表征该点电场特性的是表征该点电场特性的矢量矢量。其。其大小等于位于该点的单位电荷大小等于位于该点的单位电荷( (试探电荷试探电荷) )所受的电场力的大小,所受的电场力的大小,方向为该点正试探电荷所受电场力的方向。试探电荷方向为该点正试探电荷所受电场力的方向。试探电荷( (电量小、电量小、线度小线度小) ) 16场的观点场的观点 Maxwell电磁理论电磁理论静止电荷间的作用也可认为是静止电荷间的作用也可认为是“超距作用超距作用”m 场的观点:场的观点:电荷之间的相互作用是通过电场
8、电荷之间的相互作用是通过电场传递的,或者说电荷周围存在电场。传递的,或者说电荷周围存在电场。变化的电变化的电磁磁场以光速传播:场以光速传播:场场具有动量、质量具有动量、质量移动带电体,电场力作功:移动带电体,电场力作功:场具有能量场具有能量电场中的带电体,受电场的作用力。电场中的带电体,受电场的作用力。m电场物质性的表现电场物质性的表现17BvqEqF 静静静静动动动动源电荷源电荷qq电荷间的作用力与电场的关系电荷间的作用力与电场的关系EqF EqF EqF 18 静电场静电场 在相对场源电荷静止的参考系中观在相对场源电荷静止的参考系中观 测到的电场。测到的电场。 静止点电荷的电场静止点电荷的
9、电场rrqE420 1.4 静止点电荷的电场及其叠加静止点电荷的电场及其叠加电力的叠加原理电力的叠加原理电场叠加原理:电场叠加原理: 在在 n 个点电荷产生的电场中,某点的电场强个点电荷产生的电场中,某点的电场强度等于每个电荷单独在该点产生的电场强度的度等于每个电荷单独在该点产生的电场强度的矢量和矢量和 niiEE1电场强度的计算电场强度的计算(1)点电荷的场强点电荷的场强(2)场强叠加原理场强叠加原理和点电荷系的场强和点电荷系的场强(3)连续分布电荷的场强(任意带电体激发的场强连续分布电荷的场强(任意带电体激发的场强)121nniiEEEEE实际带电体上的电荷分布是不连续的,但是,在考察实际
10、带电体上的电荷分布是不连续的,但是,在考察物体的宏观电性质时,实验观察到的电现象是带电体物体的宏观电性质时,实验观察到的电现象是带电体上大量基元带电粒子所激发电现象的平均效果,因此,上大量基元带电粒子所激发电现象的平均效果,因此,从宏观角度出发,可以把电荷看作连续分布在带电体从宏观角度出发,可以把电荷看作连续分布在带电体上。上。为了表征电荷在带电体上任一点附近的分布情况,引为了表征电荷在带电体上任一点附近的分布情况,引入入电荷密度电荷密度的概念的概念电荷密度电荷密度1 1、电荷分布在整个体积内电荷分布在整个体积内电荷体密度电荷体密度2 2、电荷分布在极薄的表面层里、电荷分布在极薄的表面层里电荷
11、面密度电荷面密度3 3、电荷分布在细长线上、电荷分布在细长线上电荷线密度电荷线密度)/(lim30mCdVdqVqV单位:)/(lim20mCdSdqSqS单位:)/(lim0mCdldqlql单位:22连续分布电荷的电场:连续分布电荷的电场:库仑定律库仑定律+电场叠加原理电场叠加原理 完备描述静电场完备描述静电场rrVEV4d20 rrVE4dd20 VEEd VzzVyyVxxEEEEEEddd23【例例】求电偶极子中垂线远点的场强求电偶极子中垂线远点的场强电偶极子电偶极子 (Electric dipole):靠得很近的等量异号点电荷对靠得很近的等量异号点电荷对-qql电偶极矩电偶极矩 (
12、Dipole moment):):lqp 24电偶极子中垂线上远点的场强:电偶极子中垂线上远点的场强: EEEE r -3 ,比点电荷的电场的衰减得快。比点电荷的电场的衰减得快。30304)(4 rrqrrq )(430 rrrq 304rlq 304rp 304rpE 25【例例】电场中的电偶极子电场中的电偶极子在均匀电场中,受合力为零。在均匀电场中,受合力为零。+ +- -lEEpM 在均匀电场中受的力矩:在均匀电场中受的力矩:力矩使力矩使 p 尽量和尽量和 E 方向一致。方向一致。电场不均匀,合力不为零。电场不均匀,合力不为零。在电场中,受力矩作用。在电场中,受力矩作用。26+ +- -
13、o r rlEqEq E计算关于任意一点计算关于任意一点O的力矩:的力矩:)()(EqrEqrM EpEl q )()(Eqrr 典型场强结果典型场强结果1 1、点电荷的场强、点电荷的场强2 2、均匀带电无限长直导线的场强、均匀带电无限长直导线的场强 rrrqE2041dE02P Pd dE Er r+ +q qE Er r- -q qE E3 3、远离均匀带电圆环环心处的场强、远离均匀带电圆环环心处的场强4 4、远离均匀带电圆盘盘心处的场强、远离均匀带电圆盘盘心处的场强5 5、均匀带电无限大平面两侧的场强、均匀带电无限大平面两侧的场强 204xqE02E204xqEP Px xx xE EO
14、 OP PE Ex xx xO O一无限长均匀带电细线弯成如图所示的平面图形,其中是半径为R的半圆弧,AA平行于BB,试求圆心处的电场强度。作业作业30解解. 把把 q 分成无限多分成无限多 dq,dq 的场强为的场强为Ed对称性对称性所有所有dE 相互抵消相互抵消【例例】求均匀带电细圆环轴线上任一点的场强求均匀带电细圆环轴线上任一点的场强Rdqo orxdEI II IdEpq qdE31 /dEE当当xR时,圆环时,圆环点电荷。点电荷。Rdqo orxdEI II IdEpq qdE23220302020)(444cos4dcosdxRqxrqxrxrqrqE q qq q32dE pxx
15、Rrdrdq 【例例】求半径为求半径为 R, 面电荷密度为面电荷密度为 的带电圆盘的带电圆盘 在轴线上产生的场强。在轴线上产生的场强。解解. .对对半径为半径为r,宽度为,宽度为dr的圆环的电场的圆环的电场积分得积分得 2122012xRxE 33( (1) )当当 x R,圆盘,圆盘点电荷点电荷204xqE 2122012xRxE 341.5 电通量电通量 高斯定理高斯定理 通过面元的电通量的符号,与通过面元的电通量的符号,与面元矢量方面元矢量方向的定义有关。向的定义有关。 一、电通量一、电通量( (Flux) )q q cosSE 1、通过面元、通过面元 S 的电通量的电通量nSE SE
16、面元法向单位矢量面元法向单位矢量,则有,则有nE Sq qq q Scosq qnSS 定义定义面元矢量面元矢量352、通过曲面、通过曲面 S 的电通量的电通量 SiiiSSdESE 0lim3、通过闭合曲面、通过闭合曲面S的电通量的电通量 SSdE ESd dSSiS iEiS 面元面元 可定义两个指向可定义两个指向Sd d规定规定 的方向指向外为正的方向指向外为正 的正负依赖于面元指向的定义的正负依赖于面元指向的定义360 :电通量:电通量向外向外“流流”0 :电通量:电通量向内向内“流流” SSdE ESd dS二、高斯定理二、高斯定理其中其中S为任意闭合曲面为任意闭合曲面高斯面。高斯面
17、。 在真空中的静电场内,通过任意闭合曲面的在真空中的静电场内,通过任意闭合曲面的电通量,等于该曲面所包围的电量的代数和的电通量,等于该曲面所包围的电量的代数和的 1/ 0 倍倍 )(01SiSqSE d diqQ电通量与电量的关系电通量与电量的关系37(1)E是是曲面上的某点处的场强,是由曲面上的某点处的场强,是由全部全部电荷电荷(面(面S内、外)共同产生的。内、外)共同产生的。注意:注意:(2)只有闭合曲面)只有闭合曲面内部的电荷,内部的电荷,才对总通量才对总通量有贡献。有贡献。ESd dSiqQ )(01SiSqSE d d高斯定理说明了电场线起始于正电荷,终止于负电高斯定理说明了电场线起
18、始于正电荷,终止于负电荷,静电场是有源场。荷,静电场是有源场。当 表示有电场线从电荷发出,穿出闭合曲面,所以正电荷是静电场的源头。当 表示电场线穿入闭合曲面,终止于负电荷,所以负电荷是静电场的尾闾。,00SiiSdEq,00SiiSdEq39022020/444 qrrqSrqSS d dd d定理的证明:定理的证明:(1)通过包围点电荷通过包围点电荷 q 的的同心球面同心球面的电通量的电通量为为 q/ 0qn SErS40 q qq qd dd dd d sin在球坐标系中在球坐标系中22dddrrSrS 立体角的概念:立体角的概念:xq qdSrrdSd q q y zSd Sd dr 4
19、1 SSrS2d dd d 闭合曲面对内部一点所张立体角为闭合曲面对内部一点所张立体角为4 。 SSrd d21224rr 4 证明:证明:OdSd SrdS 42(2)通过包围点电荷通过包围点电荷 q 的的任意任意闭合曲面的电通闭合曲面的电通量为量为 q/ 0 d dd dd dd d 02044qrSqSEqdSrdS d rES004 qqSS d dd d通过闭合面通过闭合面S 的电通量:的电通量: d dd d 04q4304400 d dd dd dd dqq(3)任意任意闭合曲面闭合曲面外的点电荷通过该曲面的电外的点电荷通过该曲面的电通量为零。通量为零。(4)多个点电荷的电通量等
20、于它们单独存在多个点电荷的电通量等于它们单独存在时电通量的和时电通量的和(场叠加原理场叠加原理),2rrS d dd d 2ddrrS qSdSdr rr S d 2drrS rS d rS d 对高斯定理的说明:对高斯定理的说明: 1、高斯定理说的是穿过一闭合曲面(高斯面)的电电通量通量的规律。穿过闭合曲面的电通量才直接与闭合曲面包围的电量的代数和有关。要注意电场强度E和电通量的区别: E是电场的矢量点函数,它是反映场点电场强度的大小和方向的物理量;是一个标量(有正、有负),它是对一个面元或一个曲面而言的,对电场中一点谈电通量毫无意义。2、通过高斯面的电通量只与高斯面包围的电量的代通过高斯面
21、的电通量只与高斯面包围的电量的代数和有关,与高斯面的形状和大小无关,与高斯数和有关,与高斯面的形状和大小无关,与高斯面内的电荷的分布也无关。面内的电荷的分布也无关。 但这并不是说高斯面外的电荷在高斯面上不激发但这并不是说高斯面外的电荷在高斯面上不激发电场,也不是说电场强度电场,也不是说电场强度E对高斯面上的面元没有对高斯面上的面元没有电通量,而是高斯面外的电荷激发的电场,对高电通量,而是高斯面外的电荷激发的电场,对高斯面上各面元的电通量有正有负,总和为零。斯面上各面元的电通量有正有负,总和为零。3、高斯面上各点的电场强度高斯面上各点的电场强度E是高斯面内、外所有是高斯面内、外所有电荷共同激发的
22、,即高斯面上任一点的电场强度电荷共同激发的,即高斯面上任一点的电场强度,是高斯面内、外所有电荷在该点激发的电场强,是高斯面内、外所有电荷在该点激发的电场强度的矢量和。度的矢量和。4、高斯定理数学表达式中的 是高斯面所包围的电量的代数和。当 时,不能说明高斯面内没有电荷,只能说明高斯面内电量代数和为零,通过高斯面的电通量为零。当 时,不能理解为高斯面内只有正电荷,高斯面上只有正的电通量,此时高斯面内可能有正电荷,也可能有负电荷,只是正电量大于负电量,所以高斯面内电量代数和为正;高斯面上也可以有正、负电通量,只不过正电通量大于负电通量,总电通量为正。同理,可分析 的情况。iiq0iiq0iiq0i
23、iq48对称性分析对称性分析 选高斯面选高斯面一、一、均匀带电球面的电场分布均匀带电球面的电场分布1、对称性分析、对称性分析电荷分布球对称电荷分布球对称电场分布球对称电场分布球对称(场强沿径向,只与半径有关)(场强沿径向,只与半径有关)2、选高斯面为同心球面、选高斯面为同心球面1.6 利用高斯定理求静电场的分布利用高斯定理求静电场的分布电荷对称分布情况电荷对称分布情况Q493、球面外电场分布、球面外电场分布4、球面内电场分布、球面内电场分布 SQSE0d 0内内E【思考思考】为什么在为什么在r = R 处处E 不连续?不连续?RrQ rE0RrrQE420 外外24drESES 50二、二、
24、均匀带电球体的电场分布均匀带电球体的电场分布RrE0rrRQrE030341 球体内:球体内:rrQE420 球体外:球体外:51三、三、无限长圆柱面无限长圆柱面( (线电荷密度线电荷密度 ) )的电场分布的电场分布解解.(1)场强)场强轴对称轴对称沿径向沿径向(2)选半径)选半径r高高h的的同轴圆柱面为高斯面同轴圆柱面为高斯面(3)柱面外)柱面外0/2 hSESErhESS d dd d(4)圆柱面内)圆柱面内)(, 0RrE rE hSS RrrE ,20 0/2 hrhE 52四、四、带电无限大平板带电无限大平板( (面电荷密度面电荷密度 ) )的电场分布的电场分布电场垂直于板,在与板平
展开阅读全文