数字图像处理课件:第04章 图像增强.pps
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数字图像处理课件:第04章 图像增强.pps》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像处理课件:第04章 图像增强 数字图像 处理 课件 04 图像 增强
- 资源描述:
-
1、第四章 图像增强 图像增强是采用一系列技术去改善图像的视觉效果,或将图像转换成一种更适合于人或机器进行分析和处理的形式。例如采用一系列技术有选择地突出某些感兴趣的信息,同时抑制一些不需要的信息,提高图像的使用价值。 图像增强方法从增强的作用域出发,可分为空间域增强和频率域增强两种。 空间域增强是直接对图像各像素进行处理; 频率域增强是对图像经傅立叶变换后的频谱成分进行处理,然后逆傅立叶变换获得所需的图像。 讲解内容图像的代数运算彩色变换及应用伪彩色增强假彩色增强彩色增强同态滤波增强低通滤波高通滤波频率域图像锐化图像平滑局部运算局部统计法规定化均衡化直方图修正法灰度变换点运算空间域图像增强目的1
2、. 熟悉并掌握本章基本概念、空间域图像增强的原理、方法及其特点; 2. 了解频率域图像增强的方法及其实现过程;3.重点掌握直方图修正方法、特点及其应用;空间域平滑、锐化和彩色增强技术。4.1图像增强的点运算 4.1.2 灰度变换 灰度变换可调整图像的灰度动态范围或图像对比度,是图像增强的重要手段之一。) 51 . 4 (), (), (ajifababajig黑白1线性变换 令图像f(i,j)的灰度范围为a,b,线性变换后图像g(i,j)的范围为a,b,如图,g(i,j)与f(i,j)之间的关系式为: 在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内。这时在显示器上看到的将是一个
3、模糊不清、似乎没有灰度层次的图像。 下图是对曝光不足的图像采用线性变换对图像每一个像素灰度作线性拉伸。可有效地改善图像视觉效果。2分段线性变换 为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。 设原图像f(x,y)在0,Mf,感兴趣目标的灰度范围在a,b,欲使其灰度范围拉伸到c,d,则对应的分段线性变换表达式为ffgMyxfbdbyxfbMdMbyxfacayxfabcdayxfyxfacyxg),(),()/()(),(),()/()(),(0),()/(),( 通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。 3非线性灰
4、度变换 当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。对数变换 对数变换的一般表达式为 ) 71 . 4 (ln1), (ln), (cbjifajig 这里a,b,c是为了调整曲线的位置和形状而引入的参数。当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。f (i,j)g(i,j)指数变换 指数变换的一般表达式为 这里参数a,b,c用来调整曲线的位置和形状。这种变换能对图像的高灰度区给予较大的拉伸。) 81 . 4 (1), (), (ajifcbjigg (i,j)f (i,j)4.1.3 直
5、方图修整法 灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系,它能描述该图像的概貌。通过修改直方图的方法增强图像是一种实用而有效的处理技术。 直方图修整法包括直方图均衡化直方图均衡化及直方图规定化直方图规定化两类。1.直方图均衡化直方图均衡化 直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 直方图均衡化 下面先讨论连续变化图像的均衡化问题,然后推广到离散的数字图像上。 设r和s分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。即 (4.1-9) 在0,1区间内的任一个r值,都可产生一个s值,且 (4.1-10)1,0sr)(rTs T(r)作为变
6、换函数,满足下列条件: 在0r1内为单调递增函数,保证灰度级从黑到白的次序不变; 在0r1内,有0T(r)1,确保映射后的像素灰度在允许的范围内。反变换关系为 (4.1-11) T-1(s)对s同样满足上述两个条件。 由概率论理论可知,如果已知随机变量r的概率密度为pr(r),而随机变量s是r的函数,则s的概率密度ps(s)可以由pr(r)求出。 假定随机变量s的分布函数用Fs(s)表示,根据分布函数定义 )(1sTrrrssSdrrpdsspsF)121 . 4()()()( 利用密度函数是分布函数的导数的关系,等式两边对s求导,有: (4.1-13) 可见,输出图像的概率密度函数可以通过变
7、换函数T(r)控制原图像灰度级的概率密度函数得到,因而改善原图像的灰度层次,这就是直方图修改技术的基础。 从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉比较协调。因此将原图像直方图通过T(r)调整为均匀分布的直方图,这样修正后的图像能满足人眼视觉要求。 因为归一化假定 由(4.1-13)则有 )141 . 4(1)(sPsdrrpdsr)()()()(1sTdsdpdsdrpdrrpdsdsPrrrrs两边积分得 上式表明,当变换函数为r的累积直方图函数时,能达到直方图均衡化的目的。 对于离散的数字图像,用频率来代替概率,则变
8、换函数T(rk)的离散形式可表示为: 上式表明,均衡后各像素的灰度值sk可直接由原图像的直方图算出。)151 . 4()()(0rrdrrprTskjjkjjrkknnrprTs00)()( 一幅图像的sk与rk之间的关系称为该图像的累积灰度直方图。rkPr(rk)rkS(rk)1.01.01.0下面举例说明直方图均衡过程。rknkpr(rk)=nk/nsk计sk并sknskpk(s)r0=07900.190.191/7s0=1/77900.19r1=1/710230.250.443/7s1=3/710230.25r2=2/78500.210.655/7s2=5/78500.21r3=3/76
9、560.160.816/7 r4=4/73290.080.896/7s3=6/79850.24r5=5/72450.060.951 r6=6/71220.030.981 r7=1810.021.001s4=14480.11例例 假定有一幅总像素为n=6464的图像,灰度级数为8,各灰度级分布列于表中。对其均衡化计算过程如下:? 若在原图像一行上连续8个像素的灰度值分别为:0、1、2、3、4、5、6、7,则均衡后,他们的灰度值为多少?原图像的直方图均衡后图像的直方图直方图均衡化示例 2.2.直方图规定化直方图规定化 在某些情况下,并不一定需要具有均匀直方图的图像,有时需要具有特定的直方图的图像,
10、以便能够增强图像中某些灰度级。直方图规定化方法就是针对上述思想提出来的。直方图规定化是使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法。 可见,它是对直方图均衡化处理的一种有效的扩展。直方图均衡化处理是直方图规定化的一个特例。 对于直方图规定化,下面仍从灰度连续变化的概率密度函数出发进行推导,然后推广出灰度离散的图像直方图规定化算法。 假设pr(r)和pz(z)分别表示已归一化的原始图像灰度分布的概率密度函数和希望得到的图像的概率密度函数。 首先对原始图像进行直方图均衡化,即求变换函数:假定已得到了所希望的图像,对它也进行均衡化处理,即它的逆变换是这表明可由均衡化后的灰度得到希望
11、图像的灰度。 若对原始图像和希望图像都作了均衡化处理,则二者均衡化的ps(s)和pv(v)相同,即都为均匀分布的密度函数。由s代替v 得 z=G-1(s)rrdrrprTs0)171.4()()()181 .4()()(0zzdrrpzGv)191 .4()(1vGz 这就是所求得的变换表达式。根据上述思想,可总结出直方图规定化增强处理的步骤如下:对原始图像作直方图均衡化处理;按照希望得到的图像的灰度概率密度函数pz(z),求得变换函数G(z);用步骤得到的灰度级s作逆变换z= G-1(s)。 经过以上处理得到的图像的灰度级将具有规定的概率密度函数pz(z)。 采用与直方图均衡相同的原始图像数
12、据(6464像素且具有8级灰度),其灰度级分布列于表中。给定的直方图的灰度分布列于表中。 对应的直方图如下: 原图像的直方图 规定化直方图 rj sknkps(sk)zkpz(zk)vkzk并nkpz(zk)r0s0=1/77900.19z0=00.000.00z000.00r1s1=3/710230.25z1=1/70.000.00z100.00r2s2=5/78500.21z2=2/70.000.00z200.00r3s3=6/7 z3=3/70.150.15z3s0=1/77900.19r4s3=6/79850.24z4=4/70.200.35z4s1=3/71023 0.25r5s4=
13、1 z5=5/70.300.65z5s2=5/78500.21r6s4=1 z6=6/70.200.85z6s3=6/79850.24r7s4=14480.1110.151.00z7s4=14480.11117/67/ 317/67/ 57/217/ 57/47/ 17/67/47/ 307763765275416430zrzrzrzrzrzrzrzr 原图像的直方图 规定的直方图 规定化后图像的直方图? 若在原图像一行上连续8个像素的灰度值分别为:0、1、2、3、4、5、6、7,则规定化后,他们的灰度值为多少? 利用直方图规定化方法进行图像增强的主要困难在于要构成有意义的直方图。图像经直方图
14、规定化,其增强效果要有利于人的视觉判读或便于机器识别。下面是一个直方图规定化应用实例。 图(C)、(c)是将图像(A)按图(b)的直方图进行规定化得到的结果及其直方图。通过对比可以看出图(C)的对比度同图(B)接近一致,对应的直方图形状差异也不大。这样有利于影像融合处理,保证融合影像光谱特性变化小。1111111119111111111191模 板4.2 图像的空间域平滑 任何一幅原始图像,在其获取和传输等过程中,会受到各种噪声的干扰,使图像恶化,质量下降,图像模糊,特征淹没,对图像分析不利。 为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。它可以在空间域和频率域中进行。本节介绍空间域的
15、几种平滑法。4.2.14.2.1局部平滑法局部平滑法 局部平滑法是一种直接在空间域上进行平滑处理的技术。假设图像是由许多灰度恒定的小块组成,相邻像素间存在很高的空间相关性,而噪声则是统计独立的。因此,可用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。 设有一幅NN的图像f(x,y),若平滑图像为g(x,y),则有 式中x,y=0,1,N-1; s为(x,y)邻域内像素坐标的集合; M表示集合s内像素的总数。 可见邻域平均法就是将当前像素邻域内各像素的灰度平均值作为其输出值的去噪方法。 ) 12 . 4(),(1),(,sjijifMyxg(m-1,n-1)(m-1,n)(m-
16、1,n+1)(m,n-1) (m,n)(m,n+1)(m+1,n-1)(m+1,n)(m+1,n+1)例如,对图像采用33的邻域平均法,对于像素(m,n),其邻域像素如下:则有:),(),(91jnimfnmgZiZj 其作用相当于用这样的模板同图像卷积。 设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过上述平滑后,信号与噪声的方差比可望提高M倍。 这种算法简单,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。如图4.2.1(c)和(d)。 11111111191H(a)原图像 (b) 对(a)加椒盐
17、噪声的图像(c)33邻域平滑 (d) 55邻域平滑 为克服简单局部平均法的弊病,目前已提出许多保边缘、细节的局部平滑算法。它们的出发点都集中在如何选择邻域的大小、形状和方向、参加平均的点数以及邻域各点的权重系数等,下面简要介绍几种算法。4.2.2 4.2.2 超限像素平滑法超限像素平滑法 对邻域平均法稍加改进,可导出超限像素平滑法。它是将f(x,y)和邻域平均g(x,y)差的绝对值与选定的阈值进行比较,根据比较结果决定点(x,y)的最后灰度g(x,y)。其表达式为 这算法对抑制椒盐噪声比较有效,对保护仅有微小灰度差的细节及纹理也有效。可见随着邻域增大,去噪能力增强,但模糊程度也大。 同局部平滑
18、法相比,超限像元平滑法去椒盐噪声效果更好。(a)原图像 (b)对(a)加椒盐噪声的图像(c)33邻域平滑 (d) 55邻域平滑(e)33超限像素平滑(T=64)(f)55超限像素平滑(T=48)4.2.3 4.2.3 灰度最相近的灰度最相近的K K个邻点平均法个邻点平均法 该算法的出发点是:在nn的窗口内,属于同一集合体的像素,它们的灰度值将高度相关。因此,可用窗口内与中心像素的灰度最接近的K个邻像素的平均灰度来代替窗口中心像素的灰度值。这就是灰度最相近的K个邻点平均法。 较小的K值使噪声方差下降较小,但保持细节效果较好;而较大的K值平滑噪声较好,但会使图像边缘模糊。 实验证明,对于33的窗口
展开阅读全文