《信号与系统(第二版)》全册配套课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《信号与系统(第二版)》全册配套课件.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号与系统第二版 信号 系统 第二 配套 课件
- 资源描述:
-
1、信号与系统信号与系统(第二版第二版)全册全册配套课件配套课件2Signals & Systems3课程说明课程说明教学计划教学计划学时学时: 80 学分学分: 5教学内容教学内容1. 课堂理论教学课堂理论教学(68学时学时)2. 课程设计课程设计(8学时学时)3. 课堂习题课课堂习题课(4学时学时)4课程说明课程说明参考书目参考书目: 信号与系统分析信号与系统分析吕幼新吕幼新 张明友张明友 电子工业出版社电子工业出版社信号与系统分析信号与系统分析闵大镒闵大镒 朱学勇朱学勇 电子科技大学出版社电子科技大学出版社5Chapter 1 Signals and Systems The mathemat
2、ical description and representations of signals and systems. Signals and Systems arise in a broad array of application. Chapter 1 Signals and Systems6Chapter 1 Signals and Systems(1) A simple RC circuitSource voltage Vs and Capacitor voltage Vc(2) An automobile7(3) A Speech SignalChapter 1 Signals a
3、nd Systems8(4) A PictureChapter 1 Signals and Systems9(5) Vertical Wind ProfileChapter 1 Signals and Systems10信号信号的描述的描述频率特性频率特性通信系统中通信系统中信息信息: 受信者预先不知道的消息受信者预先不知道的消息;信号信号: 携带消息的物理量携带消息的物理量;信号可表示成一个或多个自变量的函数信号可表示成一个或多个自变量的函数;tzyxf,电压电压电流电流 tv ti系统分析的两个共同的基本点:系统分析的两个共同的基本点:2. 系统:对给定的信号作出响应,并产生新的信号系统:
4、对给定的信号作出响应,并产生新的信号Chapter 1 Signals and Systems1. 信号(一个或多个自变量)信号(一个或多个自变量)时间特性时间特性11 1.1 Continuous-Time and Discrete- Time Signals连续时间信号和离散时间信号连续时间信号和离散时间信号 1.1.1 Examples and Mathematical Representation1. Continuous-Time Signals The independent variable is continuous0 t tf0 t tfChapter 1 Signals a
5、nd Systems12Chapter 1 Signals and Systems2. Discrete-Time Signals The independent variable is discrete nxn5012 3145641710811n is integer numberContinuous-time signalsDiscrete-time signals 1.1.2 Signal Energy and Powerv( t) voltage i( t) current13Chapter 1 Signals and Systemsi(t)+ v(t) -R1. Instantan
6、eous power瞬时功率瞬时功率 titvtp2. Total energy dttpEtt21 nxEnnn221 t dttvRdttpE21 n nxEn2 21 ttt21nnn tvR21 dttvRtt221114Chapter 1 Signals and Systems3. Time-averaged power平均功率平均功率 dttxTPTTT221lim 2 21limnxNPNNnN Energy signal0 PE Power signal EP Energy signal0 t tx0 t tx Power signal0 t txNeither energy,
7、nor power15Chapter 1 Signals and Systems1.2 Transformations of the independent variable1.2.1 Examples of transformations of the independent variable1. Time shift( 时移时移)0ttt 0nnn 0ttxtx 0nnxnx tx0 t1 t1Example 1 tx1/tt10tt 0 otherwisePlease indicate 0ttx 16Chapter 1 Signals and Systems0ttx tx 与与 波形相同
8、波形相同00 t相当于相当于 左移(超前)左移(超前) to tx2. Time reversal( 时域反折时域反折)tt nn tx0 t1 t1tx - t1 0 t1x(-t) is a reflection of x(t) about t=000 t tx相当于相当于 右移(延迟)右移(延迟) to173. Time- scaling( 尺度变换尺度变换)Chapter 1 Signals and Systems atxtxatt tx0 t1 t1 tx 20 t1/2 t1tx210 2t1 t1a1 信号压缩信号压缩a倍倍0a0Synthesize the signals pe
9、riodic tx1T1 tx2T2当当T1/T2为有理数时,为有理数时, 为周期的为周期的 tbxtax21 Example tttx 3sin2cos 11 T3/22 TT=22211TnTnT ContinuousT, N 0 period其中其中 n1,n2 互质互质其周期其周期20Chapter 1 Signals and Systems 1.2.3 Even and Odd Signals txtxtxtx EvenOdd nxnxnxnx EvenOdd txOdtxEvtx Even part of x(t) 偶部偶部 txtxtxEv 21Odd part of x(t)
10、奇部奇部 txtxtxOd 210 1 2 t tx1-2 -1 0 1 2 t txEv1/2-2 -1 0 1 2 t txOd1/2-1/221Chapter 1 Signals and Systems 1.3 Exponential and Sinusoidal Signals复指数信号和正弦信号复指数信号和正弦信号 1.3.1 Continuous-Time Complex Exponential and Sinusoidal Signals stCetx t1. Real Exponential Signals atCetx a is real atCetxa0a022Chapte
11、r 1 Signals and Systems2. Periodic Complex Exponential and Sinusoidal Signals Period tjTtjee00 , 2, 1, 0 k10 Tje 02 kT , 2, 1 k tjCetx0 t0 js 002 TFundamental Period 基本周期基本周期0 Fundamental Frequency kje 2 23Chapter 1 Signals and Systems Euler s relation( 尤拉关系尤拉关系)tjtetj00sincos0 tjtjeejt0021sin0 tjtj
12、eet0021cos0 tjeAtA0Recos0 Average Power020000TdteEtjTT 11000TTETP121lim20dteTPtjTTT E24Chapter 1 Signals and Systems Harmonic relationtje0 Basic Signal tjkket0 , 2, 1, 0k002 TCommon Period 0 Fundamental Frequency kTTk/00 kkkth harmonic25Chapter 1 Signals and Systems3. General Complex Exponential Sig
13、nals stCetx0 js jeCC tjteeCtx0 teCjteCtt00sincos 0,Retx 0,Retx26Chapter 1 Signals and Systems 1.3.2 Discrete-Time Complex Exponential and Sinusoidal Signals nCnx n nCenx where e2. Complex Exponential Signals and Sinusoidal Signals 0 je1PE1. Real Exponential Signals a real nanx njenx0 27 jnjjnjeAeAnA
14、0022cos0Chapter 1 Signals and Systemsnjnenj00sincos0 Euler s relation3. General Complex Exponential Signals nCnx 0 je jeCC njneCnx0 nCjnCnn00sincos28 1.3.3 Periodicity Properties of Discrete-Time Complex ExponentialsChapter 1 Signals and Systemstje0 nje0 Sampling1.nje 202.njnenj00sincos0 nnx0cos 2,
15、000变化变化2k时信号相同时信号相同njnjee 20nje0 29Chapter 1 Signals and Systems( a) 0=0 N=1 ( b) 0= /8 N=16 ( c) 0= /4 N=8 ( d) 0 = /2 N=4 ( e) 0 = N=2 低频低频高频高频( f) 0 =3 /2 N=4 ( g) 0 =7 /4 N=8 ( h) 0 =15 /8 N=16 ( i) 0 =2 N=1 nnx0cos Figure 1.27 2 , 000=2 k 时时, 信号频率低信号频率低0=(2 k+1) 时时, 信号频率高信号频率高303. Periodicity P
16、roperties Chapter 1 Signals and SystemsnjNnjee00 10Nje Nm 20Rational NumbermN02 Fundamental Period2 Nenj nje2is not periodic, 2, 1, 0mmje 2 310不同不同, ,信号不同信号不同. . 0相差相差2 k,信号相同信号相同. 0越大越大, ,频率越高频率越高. .0 =2 k 时时,频率低频率低; 0 =(2 k+1)时时,频率高频率高.对任意的对任意的0, ,信号均为周期的信号均为周期的. . 为有理数时为有理数时, , 信号为周期的信号为周期的. .Cha
17、pter 1 Signals and Systemstje0 nje0 2 , 00002 TmN02 2/0324. Harmonically related periodic exponentialsChapter 1 Signals and Systems njnjeenx 4332N1=3N2=8N= n1 N1= n2 N2=24 Fundamental Period nNjkken 2, 2, 1, 0k nNNkjNken 2=1 nnkNk nNjkken 21, 2 , 1 , 0NknNjNnNjkee 2233Chapter 1 Signals and Systems 1
18、.4 The Unit Impulse and Unit Step Functions单位冲激与单位阶跃函数单位冲激与单位阶跃函数 1.4.1 The Discrete-Time Unit Impulse and Unit Step SequencesUnit Impulse n 1n=00 n 0n01 nUnit Step nu1n 00 n 00 t 0? t = 00 t 0AC+- tvc tict=037Chapter 1 Signals and Systems dttdut tt 0limUnit Impulse Function dttdut 0 t(1) t t 0 t 0
19、1dtt 0 t t1 100dtt 21 0 t/21te- 0 t1 tf tft0,lim 38Chapter 1 Signals and Systems nxnnx 0 knkxnxk mnunm 1nunun t 0 t 0 1dtt 39Chapter 1 Signals and Systems0tt 0 t t010dttt 0 t0 t(1)0tt If s(t) is even , and 1dtts ktkstk lim dtut 0 t积分区间积分区间or , equivalently dttu0 0 tt积分区间积分区间40Chapter 1 Signals and S
20、ystems 1.4.3 The Properties of Unit Impulse Functions1. Sampling and Sifting properties tfttf 0If f(t) is continuous at the point of t=0 0fdtttf Sampling property Sifting property dtttf dttf 000 0 ,0,0 tf 0f dtttf 0041Chapter 1 Signals and Systems 设设 为在为在t=0连续的任意的普通函数连续的任意的普通函数 t dtttft 00 f dttft 0
21、 00 f tfttf 0In General 000tttftttf 00tfdttttf 0 t0 t(1)0tt 42Chapter 1 Signals and Systems2. Scaling propertyIf a is real, a 0 taat 1Specially a= -1 tt Even functionExample2 dttt2/22/sin d 2 4/sin0|4/sin21 42 4/t 2 1 43Chapter 1 Signals and Systems 1.4.4 信号的计算信号的计算1. 信号的加、减、乘、除信号的加、减、乘、除Example 3 t
22、f1t sin0t0t0 ttf sin2t sin0t0t0 tftf21t 2sin0t0t0 tftf21442. 信号的基本表示信号的基本表示Chapter 1 Signals and Systems- 0 t tP2- 0 ttu 0 ttu0 1 t 1 ttu1t0 1 t 0 t tu1-1 0 1 t1 tf-1 0 t1 11tut0 1 t 2 ttu20 1 2 t 1 11tut45Chapter 1 Signals and Systems3. 信号的微分、积分运算信号的微分、积分运算 2 1 0 1 2 3 4 tExample 1.7 x(t) is depict
23、ed in Figure 1.40(a),determinethe derivative of x(t).-1x(t) 0 1 2 3 4 t dttdx(2)(-3)(2) 422312tutututx dttdx12t 23t 42t 46Chapter 1 Signals and Systems 1.5 Continuous-time and discrete-time systemsSystem Be constituted by some unitsContact with some rule The systems functionSystem analysis (系统分析)(系统
24、分析)System synthesizes (系统综合)(系统综合)Research systemContinuous-timesystem ty txDiscrete-timesystem ny nx tytx txLty nynx nxLny47Chapter 1 Signals and Systems 1.5.1 Simple Examples of Systems dttdvCRtvtvticcs tvRCtvRCdttdvscc11Linear Constant-coefficientDifferential Equation Example 1.9 tv tfm tv dttdvm
25、tvtf tfmtvmdttdv1 Linear Constant-coefficientDifferential Equation Example 1.8 tvsR tiC tvc48Chapter 1 Signals and SystemsContinuous-Time System kkMkkkkNkkdttxdbdttyda00Discrete-Time System knxbknyaMkkNkk00N-order Linear Constant-coefficientDifferential Equation N-order Linear Constant-coefficientDi
展开阅读全文