书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型高等数学课件:3.6 曲率.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2046960
  • 上传时间:2022-01-21
  • 格式:PPT
  • 页数:15
  • 大小:996KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学课件:3.6 曲率.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学课件:3.6 曲率 高等数学 课件 3.6
    资源描述:

    1、第六节曲线的弯曲程度与切线的转角有关与曲线的弧长有关机动 目录 上页 下页 返回 结束 主要内容主要内容:一、一、 弧微分弧微分 二、二、 曲率及其计算公式曲率及其计算公式 三、三、 曲率圆与曲率半径曲率圆与曲率半径 MMM 平面曲线的曲率 第三三章 一、一、 弧微分弧微分)(xfy 设在(a , b)内有连续导数, 其图形为 AB,弧长)(xsAMsxsMMMMxMMMMMMxyx22)()(MMMM2)(1xyxsxsx0lim)(2)(1yxAB)(xfy abxoyxMxxMy1lim0MMMMx机动 目录 上页 下页 返回 结束 则弧长微分公式为tyxsdd22 )(xs2)(1yx

    2、ysd)(1d2或22)(d)(ddyxsxxdxdxoyxMydT几何意义几何意义:sdTM;cosddsxsinddsy若曲线由参数方程表示:)()(tyytxx机动 目录 上页 下页 返回 结束 二、曲率及其计算公式二、曲率及其计算公式在光滑弧上自点 M 开始取弧段, 其长为,s对应切线,定义弧段 上的平均曲率ssKMMs点 M 处的曲率sKs0limsdd注意注意: 直线上任意点处的曲率为 0 !机动 目录 上页 下页 返回 结束 转角为例例1. 求半径为R 的圆上任意点处的曲率 .解解: 如图所示 ,RssKs0limR1可见: R 愈小, 则K 愈大 , 圆弧弯曲得愈厉害 ;R 愈

    3、大, 则K 愈小 , 圆弧弯曲得愈小 .sRMM机动 目录 上页 下页 返回 结束 有曲率近似计算公式,1时当 yytan)22(设y arctan得xyd)arctan(d xyyd12 xysd1d2故曲率计算公式为sKdd23)1(2yyK yK 又曲率曲率K 的计算公式的计算公式)(xfy 二阶可导,设曲线弧则由机动 目录 上页 下页 返回 结束 说明说明: (1) 若曲线由参数方程)()(tyytxx给出, 则23)1(2yyK (2) 若曲线方程为, )(yx则23)1(2xxK 23)(22yxyxyxK 机动 目录 上页 下页 返回 结束 例例2. 我国铁路常用立方抛物线361

    4、xlRy 作缓和曲线,处的曲率.)6,(, )0,0(2RllBO点击图片任意处播放暂停说明说明:铁路转弯时为保证行车平稳安全,求此缓和曲线在其两个端点且 l R. 其中R是圆弧弯道的半径, l 是缓和曲线的长度, 离心力必须连续变化 , 因此铁道的曲率应连续变化 . 例例2. 我国铁路常用立方抛物线361xlRy 作缓和曲线,且 l R. 处的曲率.)6,(, )0,0(2RllBO其中R是圆弧弯道的半径, l 是缓和曲线的长度, 求此缓和曲线在其两个端点机动 目录 上页 下页 返回 结束 解解:,0时当lxRl20 xlRy1 yK xlR1显然;00 xKRKlx1221xlRy RBy

    5、ox361xlRy l例例3. 求椭圆tbytaxsincos)20(t在何处曲率最大?解解:故曲率为 ba23)cossin(2222tbta;sintax;costby taxcos tbysin 23)(22yxyxyxK K 最大tbtatf2222cossin)(最小机动 目录 上页 下页 返回 结束 ttbttatfsincos2cossin2)(2tba2sin)(22求驻点: 的导数数表示对参tx ,0)( tf令,0t得,2,232,设tbatf2sin)()(22t)(tf022322b2b2a2b2a从而 K 取最大值 .这说明椭圆在点,0ab 时则2,0t)0,(a处曲

    6、率机动 目录 上页 下页 返回 结束 计算驻点处的函数值:yxbaba,)( 取最小值tf最大.三、三、 曲率圆与曲率半径曲率圆与曲率半径Tyxo),(DR),(yxMC设 M 为曲线 C 上任一点 , 在点在曲线KRDM1把以 D 为中心, R 为半径的圆叫做曲线在点 M 处的曲率圆 ( 密切圆 ) , R 叫做曲率半径, D 叫做曲率中心.在点M 处曲率圆与曲线有下列密切关系:(1) 有公切线;(2) 凹向一致;(3) 曲率相同 .M 处作曲线的切线和法线,的凹向一侧法线上取点 D 使机动 目录 上页 下页 返回 结束 例例4. 设一工件内表面的截痕为一椭圆, 现要用砂轮磨削其内表面 ,

    7、问选择多大的砂轮比较合适?解解: 设椭圆方程为tbytaxsincos),20(abx由例3可知, 椭圆在)0,( aoyx处曲率最大 ,即曲率半径最小, 且为 R23)cossin(2222tbtaba0tab2显然, 砂轮半径不超过ab2时, 才不会产生过量磨损 ,或有的地方磨不到的问题.ab例3 目录 上页 下页 返回 结束 内容小结内容小结1. 弧长微分xysd1d2或22)(d)(ddyxs2. 曲率公式sKdd23)1 (2yy 3. 曲率圆曲率半径KR1yy 23)1 (2机动 目录 上页 下页 返回 结束 思考与练习思考与练习1. 曲线在一点处的曲率圆与曲线有何密切关系?答答: 有公切线 ;凹向一致 ;曲率相同.2. 求双曲线1yx的曲率半径 R , 并分析何处 R 最小?解解:,12xy,23xy 则 R23)1 (2yy 234)1 (1x32x232)(1221xx 利用baba2222.21为最小值显然xR机动 目录 上页 下页 返回 结束 11yox

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学课件:3.6 曲率.ppt
    链接地址:https://www.163wenku.com/p-2046960.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库