高等数学课件:13.6(2) 幂级数的应用.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学课件:13.6(2) 幂级数的应用.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学课件:13.62 幂级数的应用 高等数学 课件 13.6 幂级数 应用
- 资源描述:
-
1、第六节第六节(2) (2) 一、近似计算一、近似计算 二、欧拉公式二、欧拉公式函数幂级数展开式的应用函数幂级数展开式的应用 机动 目录 上页 下页 返回 结束 第13章 三、微分方程的幂级数解法三、微分方程的幂级数解法 一、近似计算一、近似计算mxxm1)1 (2!2) 1(xmmnxnnmmm!) 1() 1()11(x例例1. 计算5240.104 32r8231!254112331!3594116431!451494181181131256)31511(3240459926. 200741. 03的近似值, 精确到282811811131!254134105 . 013431518231
2、!254112331!35941解解: 553243240514)1(331机动 目录 上页 下页 返回 结束 )11(432)1ln(432xxxxxx例例2. 计算2ln的近似值 ,使准确到.104解解: 已知)11(432)1ln(432xxxxxx故)1ln()1ln(11lnxxxx5351312xxx令211xx得7533171315131313122ln)11(x,31x于是有用此式求 ln2 计算量大9431912r211)91(91132911111327533171315131313122ln6931. 01131111133113193414102 . 0787321在上
3、述展开式中取前四项, 机动 目录 上页 下页 返回 结束 说明说明: 在展开式xx11ln中,令121nx53)121(51)121(3112121lnnnnnn得) 1ln( n具此递推公式可求出任意正整数的对数 . 如53)91(51)91(319122ln25ln6094. 1 ( n为自然数) , 53)121(51)121(311212lnnnnn5351312xxx机动 目录 上页 下页 返回 结束 753)20(!71)20(!51)20(!312020sin例例3. 利用,!3sin3xxx求9sin误差. 解解: 先把角度化为弧度9(弧度)52)20(!51r5)2 . 0(
4、120151031!3sin3xxx!55x!77x000646. 0157080. 03)20(!312020sin误差不超过 510的近似值 , 并估计91802015643. 0机动 目录 上页 下页 返回 结束 ( 取 例例4. 计算积分xexd21201的近似值, 精确到)56419. 01解解:12xe!) 1(20nxnnn)(xxexd22210 xd 2210!) 1(20nxnnn0!) 1(2nnnxxnd2021.104! 1)(2x!2)(22x!3)(32x0 !) 1(2nnn1221n) 12(n机动 目录 上页 下页 返回 结束 !3721!252132111
5、642xdex22102!3721!252132111642nnnnr22) 12( !1141042102) 12( !nnn则 n 应满足4nxexd22120则所求积分近似值为欲使截断误差5205. 0,4n取机动 目录 上页 下页 返回 结束 例例5. 计算积分xxxdsin10的近似值, 精确到.104解解: 由于, 1sinlim0 xxx故所给积分不是广义积分.若定义被积函数在 x = 0 处的值为 1, 则它在积分区间! ) 12() 1(!7!5!31sin2642nxxxxxxnnxxxdsin101!331!551! ) 12() 12() 1(nnn3r00167. 0
6、05556. 01上连续, 且有幂级数展开式 :!7714103 . 03528019461. 0机动 目录 上页 下页 返回 结束 二、欧拉二、欧拉(Euler)公式公式)(1nnnviu 则称 收敛收敛 , 且其和为)(1nnnviu 绝对收敛,1nnu)(1nnnviu 收敛 .,1uunn,1vvnn若nnnviu 1. viu 221nnnvu 收敛,若对复数项级数,22nnnvuu22nnnvuv1nnv绝对收敛则称 绝对收敛绝对收敛. 由于, 故知 欧拉 目录 上页 下页 返回 结束 定义定义: 复变量yixz的指数函数为)(!1!2112zznzzenz易证它在整个复平面上绝对
展开阅读全文