书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型高等数学课件:10.1 重积分概念和性质.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2046884
  • 上传时间:2022-01-21
  • 格式:PPT
  • 页数:28
  • 大小:1.09MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学课件:10.1 重积分概念和性质.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学课件:10.1 重积分概念和性质 高等数学 课件 10.1 积分 概念 性质
    资源描述:

    1、第10章一元函数积分学一元函数积分学多元函数积分学多元函数积分学重积分重积分曲线积分曲线积分曲面积分曲面积分重 积 分 三、三重积分的定义三、三重积分的定义 第一节一、引例一、引例 二、二重积分的定义与可积性二、二重积分的定义与可积性 五、曲顶柱体体积的计算五、曲顶柱体体积的计算 机动 目录 上页 下页 返回 结束 重积分的概念与性质 第10章 四、二重积分的性质四、二重积分的性质 解法解法: 类似定积分解决问题的思想:一、引例一、引例1.曲顶柱体的体积曲顶柱体的体积 给定曲顶柱体:0),(yxfz底:底: xoy 面上的闭区域 D顶顶: 连续曲面侧面:侧面:以 D 的边界为准线 , 母线平行

    2、于 z 轴的柱面求其体积.(“分割, 近似, 求和, 求极限” ) D),(yxfz 机动 目录 上页 下页 返回 结束 “大化小, 常代变, 近似和, 求极限” D),(yxfz 1)“大化小”用任意曲线网分D为 n 个区域n,21以它们为底把曲顶柱体分为 n 个2)“常代变”在每个k, ),(kk3)“近似和”nkkVV1nkkkkf1),(),(kkf),2, 1(),(nkfVkkkk则中任取一点小曲顶柱体k),(kk机动 目录 上页 下页 返回 结束 4)“取极限”的直径为定义kkk,PPPP2121max)(令)(max1knknkkkkfV10),(lim),(yxfz ),(k

    3、kfk),(kk机动 目录 上页 下页 返回 结束 2. 平面薄片的质量平面薄片的质量 有一个平面薄片, 在 xoy 平面上占有区域 D ,),(Cyx计算该薄片的质量 M .度为),(),(常数若yx设D 的面积为 , 则M若),(yx非常数 , 仍可用其面密 “大化小, 常代变,近似和, 求 极限” 解决.1)“大化小”用任意曲线网分D 为 n 个小区域,21n相应把薄片也分为小区域 .D机动 目录 上页 下页 返回 结束 yx2)“常代变”中任取一点k在每个),(kk3)“近似和”nkkMM1nkkkk1),(4)“取极限”)(max1knk令nkkkkM10),(limk),(kk),

    4、2, 1(),(nkMkkkk则第 k 小块的质量机动 目录 上页 下页 返回 结束 yx两个问题的共性共性:(1) 解决问题的步骤相同(2) 所求量的结构式相同“大化小, 常代变, 近似和,取极限”nkkkkfV10),(limnkkkkM10),(lim曲顶柱体体积: 平面薄片的质量: 机动 目录 上页 下页 返回 结束 二、二重积分的定义及可积性二、二重积分的定义及可积性定义定义:),(yxf设将区域 D 任意分成 n 个小区域),2,1(nkk任取一点,),(kkk若存在一个常数 I , 使nkkkkfI10),(lim可积可积 , ),(yxf则称Dyxfd),(),(yxfI为称在

    5、D上的二重积分二重积分.称为积分变量yx,积分和Dyxfd),(积分域被积函数积分表达式面积元素记作是定义在有界区域 D上的有界函数 , 机动 目录 上页 下页 返回 结束 DyxfVd),(引例1中曲顶柱体体积:DyxMd),(引例2中平面薄板的质量:如果 在D上可积,),(yxf也常d,ddyx二重积分记作.dd),(Dyxyxf,kkkyx 这时分区域D , 因此面积元素可用平行坐标轴的直线来划 记作Dyxyxfdd),(Dyxyxdd),(机动 目录 上页 下页 返回 结束 yxO二重积分存在定理二重积分存在定理:若函数),(yxf),(yxf定理2.),(yxf上可在则Dyxf),(

    6、证明略)定理1.在D上可积可积.限个点或有限个光滑曲线外都连续 ,积.在有界闭区域 D上连续, 则若有界函数在有界闭区域 D 上除去有 机动 目录 上页 下页 返回 结束 三、三重积分的概念三、三重积分的概念 类似二重积分解决问题的思想, 采用kkkkv),( ),(kkkkv引例引例: 设在空间有限闭区域 内分布着某种不均匀的物质,),(Czyx求分布在 内的物质的可得nk 10limM“大化小大化小, 常代变常代变, 近似和近似和, 求极限求极限”解决方法解决方法:质量 M .密度函数为机动 目录 上页 下页 返回 结束 定义定义. 设,),( , ),(zyxzyxfkkknkkvf),

    7、(lim10存在,),(zyxfvzyxfd),(称为体积元素体积元素, vd.dddzyx若对 作任意分割任意分割: 任意取点任意取点则称此极限为函数在上的三重积分三重积分.在直角坐标系下常写作),2,1(nkvk,),(kkkkv下列“乘积和式” 极限记作记作机动 目录 上页 下页 返回 结束 四、重积分的性质四、重积分的性质Dyxfkd),(. 1( k 为常数)Dyxgyxfd),(),(. 221d),(d),(d),(. 3DDDyxfyxfyxf, 1),(. 4yxfD上若在DDdd1 为D 的面积, 则 ),(2121无公共内点DDDDDDyxfkd),(DDyxgyxfd)

    8、,(d),(机动 目录 上页 下页 返回 结束 特别, 由于),(),(),(yxfyxfyxfDyxfd),(则Dyxfd),(Dyxd),(5. 若在D上),(yxf, ),(yxDyxfd),(6. 设),(min),(maxyxfmyxfMDDD 的面积为 ,MyxfmDd),(则有机动 目录 上页 下页 返回 结束 7.(二重积分的中值定理),(yxf设函数,),(D),(),(fdyxfD证证: 由性质6 可知,MyxfmDd),(1由连续函数介值定理, 至少有一点D),(Dyxffd),(1),(),(d),(fyxfD在闭区域D上 为D 的面积 ,则至少存在一点使使连续,因此机

    9、动 目录 上页 下页 返回 结束 例例1. 比较下列积分的大小:d)(,d)(32DDyxyx其中2) 1()2( :22yxD解解: 积分域 D 的边界为圆周1 yx332)()(yxyx2) 1()2(22yx它与 x 轴交于点 (1,0) ,.1相切与直线 yx而域 D 位, 1 yx从而d)(d)(32DDyxyx于直线的上方, 故在 D 上 1y2xo1D机动 目录 上页 下页 返回 结束 例例2. 估计下列积分之值10:coscos100ddI22yxDyxyxD解解: D 的面积为200)210(2由于yx22coscos1001积分性质5100200I102200即: 1.96

    10、 I 210101010D10011021xyo机动 目录 上页 下页 返回 结束 xyo D8. 设函数),(yxfD 位于 x 轴上方的部分为D1 , ),(),() 1 (yxfyxf),(),()2(yxfyxfd),(Dyxf0d),(Dyxf当区域关于 y 轴对称, 函数关于变量 x 有奇偶性时, 仍1D在 D 上d),(21Dyxf在闭区域上连续, 域D 关于x 轴对称,则则有类似结果.在第一象限部分, 则有1:,221 yxDD 为圆域如Dyxyxdd)(22Dyxyxdd)(1dd)(422Dyxyx0机动 目录 上页 下页 返回 结束 xbad 五、曲顶柱体体积的计算五、曲

    11、顶柱体体积的计算设曲顶柱体的底为bxaxyxyxD)()(),(21任取, ,0bax 平面0 xx 故曲顶柱体体积为DyxfVd),(yyxfxAxxd),()()()(000201截面积为yyxfxxd),()()(21baxxAd )(截柱体的)(2xy)(1xyzxyoab0 xD机动 目录 上页 下页 返回 结束 yyxfxxxbad),(d)()(21记作记作 ydcxo)(2yx)(1yxyydcd dycyxyyxD),()(),(21同样, 曲顶柱体的底为则其体积可按如下两次积分计算DyxfVd),(xyxfyyd),()()(21xyxfyyd),()()(21dcyd机动

    12、 目录 上页 下页 返回 结束 例例3. 求两个底圆半径为R 的直圆柱面所围的体积.xyzRRo解解: 设两个直圆柱方程为,222Ryx利用对称性, 考虑第一卦限部分,其曲顶柱体的顶为则所求体积为yxxRVDdd822220dxRyxxRRd)(80223316R222Rzx22xRz 00:),(22RxxRyDyxxxRRd8022222Ryx222RzxD机动 目录 上页 下页 返回 结束 内容小结内容小结1. 二重积分的定义Dyxfd),(iiinif),(lim10)dd(dyx2. 二重积分的性质 (与定积分性质相似)3. 曲顶柱体体积的计算二次积分法机动 目录 上页 下页 返回

    13、结束 被积函数相同, 且非负, 思考与练习思考与练习yxyxIyxdd1122yxyxIyxdd12yxyxIdd11113解解: 321,III由它们的积分域范围可知312III11xyo1. 比较下列积分值的大小关系:机动 目录 上页 下页 返回 结束 2. 设D 是第二象限的一个有界闭域 , 且 0 y 1, 则,d31DxyI,d322DxyIDxyId3213的大小顺序为 ( ).)(;)(;)(;)(213123312321IIIDIIICIIIBIIIA提示: 因 0 y 1, 故;212yyyD故在D上有, 03x又因323321xyxyxyyox1D机动 目录 上页 下页 返

    14、回 结束 3. 证明:, 2d)cossin(122Dyx其中D 为.10, 10yx解解: 利用题中 x , y 位置的对称性, 有d)cossin(22Dyxd)cossin(d)cossin(222221DDxyyxd)cossin(d)cossin(222221DDyyxxd)cossin(22Dxxd)sin(242Dx,1)sin(,1042212xx又 D 的面积为 1 , 故结论成立 .yox1D1机动 目录 上页 下页 返回 结束 5 . 04 . 0I备用题备用题1. 估计 的值, 其中 D 为DxyyxI162d22. 20, 10yx解解: 被积函数16)(1),(2yxyxf2D 的面积41)0 , 0( fM的最大值),(yxfD上在51431)2, 1 (22 fm),(yxf的最小值,4252 I故yox2D1机动 目录 上页 下页 返回 结束 220yx 0)ln(22 yx2. 判断的正负.)0(dd)ln(122yxyxyx解:解:1yx当时,故0)ln(22 yx又当时,1 yx于是2)(yx 1机动 目录 上页 下页 返回 结束 0dd)ln(122yxyxyx1111xyoD

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学课件:10.1 重积分概念和性质.ppt
    链接地址:https://www.163wenku.com/p-2046884.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库