高等数学课件:9.10 极值与最值.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学课件:9.10 极值与最值.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学课件:9.10 极值与最值 高等数学 课件 9.10 极值
- 资源描述:
-
1、 第九章 第十节第十节一、多元函数的极值一、多元函数的极值 二、最值应用问题二、最值应用问题三、条件极值三、条件极值机动 目录 上页 下页 返回 结束 多元函数的极值及其求法多元函数的极值及其求法xyz一、一、 多元函数的极值多元函数的极值 定义定义: 若函数则称函数在该点取得极大值(极小值).例如例如 :在点 (0,0) 有极小值;在点 (0,0) 有极大值;在点 (0,0) 无极值.极大值和极小值统称为极值, 使函数取得极值的点称为极值点.),(),(00yxfyxf),(),(00yxfyxf或2243yxz22yxzyxz ),(),(00yxyxfz在点的某邻域内有xyzxyz机动
2、目录 上页 下页 返回 结束 说明说明: 使偏导数都为 0 的点称为驻点 . 例如,定理定理1 (必要条件) 函数偏导数,证证:据一元函数极值的必要条件可知定理结论成立.0),(,0),(0000yxfyxfyx取得极值 ,取得极值取得极值 但驻点不一定是极值点.有驻点( 0, 0 ), 但在该点不取极值.且在该点取得极值 , 则有),(),(00yxyxfz在点存在),(),(00yxyxfz在点因在),(0yxfz 0 xx 故在),(0yxfz 0yy yxz 机动 目录 上页 下页 返回 结束 时, 具有极值定理定理2 (充分条件)的某邻域内具有一阶和二阶连续偏导数, 且令则: 1)
3、当A0 时取极小值.2) 当3) 当时, 没有极值.时, 不能确定 , 需另行讨论.若函数的在点),(),(00yxyxfz 0),(,0),(0000yxfyxfyx),(, ),(, ),(000000yxfCyxfByxfAyyyxxx02 BAC02 BAC02 BAC机动 目录 上页 下页 返回 结束 证证: 由二元函数的泰勒公式, 并注意0),(,0),(0000yxfyxfyx则有),(),(0000yxfkyhxfz20021),(hkyhxfxxkhkyhxfyx),(200),(200kkyhxfyy,),(),(00连续的二阶偏导数在点由于yxyxf所以Akyhxfxx)
4、,(00Bkyhxfyx),(00Ckyhxfyy),(00机动 目录 上页 下页 返回 结束 22221kCkhBhA其中其中 , , 是当h 0 , k 0 时的无穷小量 ,于是z),(21khQ)(22kh ,很小时因此当kh.),(确定的正负号可由khQz(1) 当 ACB2 0 时, 必有 A0 , 且 A 与C 同号, )()2(),(222221kBACkBkhBAhAkhQA)()(2221kBACkBhAA可见 ,0),(,0khQA时当从而z0 , 因此),(yxf;),(00有极小值在点yx机动 目录 上页 下页 返回 结束 )(2o22221kkhh,0),(,0khQ
5、A时当从而 z0,在点因此),(yxf;),(00有极大值yx(2) 当 ACB2 0 时, 若A , C不全为零, 无妨设 A0, 则 )(),(221kkBhAkhQA)(2BAC ),(0)()(),(0000yxyyBxxAyx接近沿直线当时, 有,0kBhAAkhQ与故),(异号;),(yx当,),(0000时接近沿直线yxyy,0k有AkhQ与故),(同号.可见 z 在 (x0 , y0) 邻近有正有负, 在点因此),(yxf;),(00无极值yxxy),(00yxo机动 目录 上页 下页 返回 结束 +xy),(00yxo若 AC 0 , 则必有 B0 ,不妨设 B0 , 此时
6、222),(kCkhBhAkhQ),(00kyhx对点,同号时当kh,0),(khQ,异号时当kh,0),(khQ可见 z 在 (x0 , y0) 邻近有正有负, 在点因此),(yxf;),(00无极值yxkhB2,0z从而,0z从而(3) 当ACB2 0 时, 若 A0, 则21)(),(kBhAkhQA若 A0 , 则 B0 ,2),(kCkhQ可能),(khQ为零或非零机动 目录 上页 下页 返回 结束 此时)(),(221okhQz因此 第十节 目录 上页 下页 返回 结束 ,)(,0),(2确定的正负号由时因为ozkhQ不能断定 (x0 , y0) 是否为极值点 . 例例1.1. 求
7、函数解解: 第一步第一步 求驻点求驻点. .得驻点: (1, 0) , (1, 2) , (3, 0) , (3, 2) .第二步第二步 判别判别.在点(1,0) 处为极小值;解方程组ABC),(yxfx09632 xx),(yxfy0632yy的极值.求二阶偏导数,66),( xyxfxx,0),(yxfyx66),(yyxfyy,12A,0B,6C,06122 BAC5)0, 1 ( f,0Axyxyxyxf933),(2233机动 目录 上页 下页 返回 结束 在点(3,0) 处不是极值;在点(3,2) 处为极大值.,66),( xyxfxx,0),(yxfyx66),(yyxfyy,1
8、2A,0B,6C,06122 BAC)0,3( f6,0,12CBA31)2,3( f,0)6(122 BAC,0A在点(1,2) 处不是极值;6,0,12CBA)2, 1 (f,0)6(122 BACABC机动 目录 上页 下页 返回 结束 例例2.讨论函数及是否取得极值.解解: 显然 (0,0) 都是它们的驻点 ,在(0,0)点邻域内的取值, 因此 z(0,0) 不是极值.因此,022时当 yx222)(yxz0)0 , 0( z为极小值.正正负负033yxz222)(yxz在点(0,0)xyzo并且在 (0,0) 都有 02 BAC33yxz可能为0)()0 , 0()0 , 0(222
展开阅读全文