书签 分享 收藏 举报 版权申诉 / 24
上传文档赚钱

类型高等数学课件:3.1 中值定理.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2046842
  • 上传时间:2022-01-21
  • 格式:PPT
  • 页数:24
  • 大小:1.36MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学课件:3.1 中值定理.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学课件:3.1 中值定理 高等数学 课件 3.1 中值 定理
    资源描述:

    1、第三章中值定理中值定理应用应用研究函数性质及曲线性态利用导数解决实际问题罗尔中值定理拉格朗日中值定理柯西中值定理泰勒公式 (第二节)推广推广微分中值定理 与导数的应用 一、罗尔一、罗尔( Rolle )中值定理中值定理第一节机动 目录 上页 下页 返回 结束 二、拉格朗日(二、拉格朗日(Lagrange)中值定理)中值定理 三、柯西三、柯西(Cauchy)中值定理中值定理 微分中值定理 第三三章 费马费马(fermat)引理引理一、罗尔一、罗尔( Rolle )中值中值定理定理,)(0有定义在x且 )(0 xf 存在, )()(0 xfxf)(或0)(0 xf证证: 设, )()(, )(00

    2、00 xfxxfxxx则)(0 xf xxfxxfx)()(lim000)0(x)(0 xf)0(x)(0 xf000)(0 xfxyo0 x)(xfy 费马 目录 上页 下页 返回 结束 证毕罗尔罗尔( Rolle )中值定理中值定理)(xfy 满足:(1) 在区间 a , b 上连续(2) 在区间 (a , b) 内可导(3) f ( a ) = f ( b ),使. 0)(fxyoab)(xfy 证证:,上连续在因,)(baxf故在 a , b 上取得最大值 M 和最小值 m .若 M = m , 则, ,)(baxMxf因此.0)(, ),(fba在( a , b ) 内至少存在一点机

    3、动 目录 上页 下页 返回 结束 若 M m , 则 M 和 m 中至少有一个与端点值不等,不妨设 , )(afM 则至少存在一点, ),(ba使,)(Mf. 0)(f注意注意:1) 定理条件条件不全具备, 结论不一定成立. 1,010,)(xxxxf则由费马引理得 1 , 1)(xxxf 1 ,0)(xxxfx1yOx1y1Ox1yOxyab)(xfy O不连续在 1 , 0不可导在) 1 , 0() 1 ()0(ff例如,使2) 定理条件只是充分的.本定理可推广为)(xfy 在 ( a , b ) 内可导, 且)(limxfax)(limxfbx在( a , b ) 内至少存在一点,. 0

    4、)(f证明提示证明提示: 设证 F(x) 在 a , b 上满足罗尔定理 . )(xFaxaf, )(bxaxf, )(bxbf, )(机动 目录 上页 下页 返回 结束 例例1. 证明方程0155 xx, 15)(5xxxf. 3) 1 (, 1)0(ff, 0)(0 xf, ) 1,0(011xxx) 1(5)(4xxf),1,0(, 0 x有且仅有一个小于1 的正实根 .证证: 1) 存在性 .则)(xf在 0 , 1 连续 , 且由介值定理知存在, ) 1 ,0(0 x使即方程有小于 1 的正根.0 x2) 唯一性 .假设另有, 0)(1xf使在以)(xf10, xx为端点的区间满足罗

    5、尔定理条件 ,之间在10, xx至少存在一点,. 0)(f使但矛盾, 故假设不真!设机动 目录 上页 下页 返回 结束 二、拉格朗日中值定理二、拉格朗日中值定理 )( (1) 在区间 a , b 上连续)(xfy 满足:(2) 在区间 ( a , b ) 内可导至少存在一点, ),(ba使.)()()(abafbff思路思路: 利用逆向思维逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然 ,)(x在a, b 上连续, 在(a, b)内可导, 且证证: 问题转化为证)(x)(xfxabafbf)()()(a由罗尔定理知至少存在一点, ),(ba,0)(使即定理结论成立 ., )(babbfa

    6、afb)()(0)()()(abafbff证毕xyab)(xfy Oxyabafbf)()(拉格朗日中值定理的有限增量形式:推论推论: 若函数在区间 I 上满足,0)( xf则)(xf在 I 上必为常数.)(xf证证: 在 I 上任取两点, )(,2121xxxx上用拉在,21xx日中值公式 , 得0)()(12xfxf)(12xxf)(21xx)()(12xfxf由 的任意性知, 21,xx)(xf在 I 上为常数 .) 10()(0 xxxfy,00 xxbxa令则机动 目录 上页 下页 返回 结束 例例2. 证明等式. 1, 1,2arccosarcsinxxx证证: 设,arccosa

    7、rcsin)(xxxf上则在) 1, 1()(xf由推论可知Cxxxfarccosarcsin)( (常数) 令 x = 0 , 得.2C又,2) 1(f故所证等式在定义域 上成立. 1, 1自证自证:),(x,2cotarcarctanxx211x211x0经验经验: 欲证Ix时,)(0Cxf只需证在 I 上, 0)( xf,0Ix 且.)(00Cxf使机动 目录 上页 下页 返回 结束 例例3. 证明不等式证证: 设, )1ln()(ttf上满足拉格朗日在则,0)(xtf中值定理条件,即因为故. )0()1ln(1xxxxx)0()(fxf)1ln(xxx0,11x xx1x)0()1ln

    8、(1xxxxxxxf0, )0)(因此应有机动 目录 上页 下页 返回 结束 三、柯西三、柯西(Cauchy)中值定理中值定理0)()()()()()(fFaFbFafbf)(分析分析:)(xf及(1) 在闭区间 a , b 上连续(2) 在开区间 ( a , b ) 内可导(3)在开区间 ( a , b ) 内至少存在一点, ),(ba使.)()()()()()(FfaFbFafbf满足 :)(xF0)( xF)()(aFbF)(abFba0问题转化为证)()()()()()()(xfxFaFbFafbfx构造辅助函数构造辅助函数证证: 作辅助函数)()()()()()()(xfxFaFbF

    9、afbfx)()()()()()()()(baFbFbFafaFbfa,),(,)(内可导在上连续在则babax且, ),(ba使, 0)(即由罗尔定理知, 至少存在一点.)()()()()()(FfaFbFafbf思考思考: 柯西定理的下述证法对吗 ?),(, )()()(baabfafbf),(, )()()(baabFaFbF两个 不一定相同错错! !机动 目录 上页 下页 返回 结束 上面两式相比即得结论. 柯西定理的几何意义柯西定理的几何意义:)()()()()()(FfaFbFafbf)(F)(aF)()(tfytFx)(af)(bF)(bf)()(ddtFtfxy注意:弦的斜率切

    10、线斜率xyO)0() 1 (ff)0() 1 (FF例例4. 设).0() 1 (2)(fff2)(01)0() 1 (fffxxxf)()(2,)(2xxF,) 1 ,0(, 1 ,0)(内可导在上连续在xf至少存在一点),1,0(使证证: 结论可变形为设则)(, )(xFxf在 0, 1 上满足柯西中值定理条件, 因此在 ( 0 , 1 ) 内至少存在一点 , 使)(f )(F012即)0() 1 (2)(fff证明机动 目录 上页 下页 返回 结束 11lncos1lnln1lnsinlnsinee), 1(,)()() 1 ()() 1 ()(eFfFeFfef例例5. 试证至少存在一

    11、点), 1(e使.lncos1sinlncos1sin 证证: 法法1 用柯西中值定理 .xxFxxfln)(,lnsin)(则 f (x) , F(x) 在 1 , e 上满足柯西中值定理条件, 令因此 11lncoslncos1sin即分析分析:机动 目录 上页 下页 返回 结束 例例5. 试证至少存在一点), 1(e使.lncos1sin法法2 令xxflnsin)(则 f (x) 在 1 , e 上满足罗尔中值定理条件, ), 1 ( e使0)(fxlncos)(xf1sinx1lncos1sin 因此存在x1xln1sin 机动 目录 上页 下页 返回 结束 内容小结内容小结1. 微

    12、分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理)()(afbfxxF)()()(afbfxxF)(2. 微分中值定理的应用(1) 证明恒等式(2) 证明不等式(3) 证明有关中值问题的结论关键关键: 利用逆向思维设辅助函数费马引理机动 目录 上页 下页 返回 结束 4412 3412思考与练习思考与练习1. 填空题填空题1) 函数4)(xxf在区间 1, 2 上满足拉格朗日定理条件, 则中值._2) 设有个根 , 它们分别在区间341530)( xf)4, 3(, )2, 1 (, )3,2(机动 目录 上页 下页 返回 结束 上., )4)(3)(2)(1()(xxxxxf

    13、方程2. 设,0)(Cxf且在),0(内可导, 证明至少存在一点, ),0(使.cot)()(ff提示提示: 由结论可知, 只需证0cos)(sin)(ff即0sin)(xxxf验证)(xF在,0上满足罗尔定理条件.设xxfxFsin)()(机动 目录 上页 下页 返回 结束 3. 若)(xf可导, 试证在其两个零点间一定有)()(xfxf的零点. 提示提示: 设,0)()(2121xxxfxf欲证:, ),(21xx使0)()(ff只要证0)()(ffee亦即0 )(xxxfe作辅助函数, )()(xfexFx验证)(xF在,21xx上满足罗尔定理条件.机动 目录 上页 下页 返回 结束 4

    14、. 思考: 在0,00,sin)(12xxxxfx,0 x),0(, )0)()0()(xxffxf即xx12sin1sin2(,)cos1x),0(xxx111sinsin2cos当,0 0 x时. 0cos1问问是否可由此得出 ?0coslim10 xx不能不能 !因为)(x是依赖于 x 的一个特殊的函数.因此由上式得表示 x 从右侧以任意方式趋于 0 . 0 x应用拉格朗日中值定理得上对函数机动 目录 上页 下页 返回 结束 备用题备用题求证存在, ) 1 ,0(. 0)()(ffn使1. 设 1 , 0可导,且,0) 1 (f在连续,) 1 ,0()(xf证证:)()(xfxxn, ) 1 ,0(因此至少存在显然)(x在 上满足罗尔定理条件, 1 , 0)(即0)()(ffn设辅助函数使得)()(1ffnnn0机动 目录 上页 下页 返回 结束 0)0(,0)( fxf设 证明对任意0, 021xx有)()()(2121xfxfxxf证证:210 xx )()()(1221xfxfxxf12)(xf0)(121 fx)()()(2121xfxfxxf,(2122xxx2.不妨设 )0()()()(1221fxfxfxxf)(21)011x11)(xf机动 目录 上页 下页 返回 结束

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学课件:3.1 中值定理.ppt
    链接地址:https://www.163wenku.com/p-2046842.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库