高等数学课件:11.9 多元函数积分的应用.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学课件:11.9 多元函数积分的应用.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学课件:11.9 多元函数积分的应用 高等数学 课件 11.9 多元 函数 积分 应用
- 资源描述:
-
1、第九节一、立体体积一、立体体积 二、曲面的面积二、曲面的面积 三、物体的质心三、物体的质心 四、物体的转动惯量四、物体的转动惯量 五、物体的引力五、物体的引力 机动 目录 上页 下页 返回 结束 多元函数积分的应用 第11章 六、场论初步六、场论初步 一、立体体积一、立体体积 曲顶柱体曲顶柱体的顶为连续曲面),(yxfz 则其体积为DyxyxfVdd),(,),(Dyx 占有空间有界域空间有界域 的立体的体积为zyxVddd机动 目录 上页 下页 返回 结束 1:221yxzS任一点的切平面与曲面222:yxzS所围立体的体积 V . 解解: 曲面1S的切平面方程为202000122yxyyx
2、xz它与曲面22yxz的交线在 xoy 面上的投影为1)()(2020yyxxyxVDdd 22yx 202000122yxyyxxyxDdd 12020)()(yyxxsin,cos00ryyrxx令2(记所围域为D ),(000zyx在点Drrrdd2例例1. 求曲面rr dd10320机动 目录 上页 下页 返回 结束 xoyza2例例2. 求半径为a 的球面与半顶角为 的内接锥面所围成的立体的体积.解解: 在球坐标系下空间立体所占区域为:则立体体积为zyxVdddcos202darrdsincos316033a)cos1(3443acos20ar 0200dsin20drrvdddsi
3、nd2rM机动 目录 上页 下页 返回 结束 MAdzdn二、曲面的面积二、曲面的面积xyzSo设光滑曲面DyxyxfzS),( , ),(:则面积 A 可看成曲面上各点),(zyxM处小切平面的面积 d A 无限积累而成. 设它在 D 上的投影为 d ,Adcosd),(),(11cos22yxfyxfyxd),(),(1d22yxfyxfAyx(称为面积元素)则Mnd机动 目录 上页 下页 返回 结束 故有曲面面积公式d),(),(122DyxyxfyxfAyxyzxzADdd)()(122若光滑曲面方程为zyzxyxAdd)()(122,),( , ),(zyDzyzygx则有zyD即机
4、动 目录 上页 下页 返回 结束 xzxyzyAdd)()(122若光滑曲面方程为 ,),( , ),(xzDxzxzhy若光滑曲面方程为隐式,0),(zyxF则则有yxzyzxDyxFFyzFFxz),(,AyxDxzDzzyxFFFF222,0zF且yxdd机动 目录 上页 下页 返回 结束 例例3. 计算双曲抛物面yxz 被柱面222Ryx所截解解: 曲面在 xoy 面上投影为,:222RyxD则yxzzADyxdd122yxyxDdd122rrrRd1d0220 )1)1( 32232R出的面积 A .机动 目录 上页 下页 返回 结束 三、物体的质心三、物体的质心设空间有n个质点,
5、),(kkkzyx其质量分别, ),2, 1(nkmk由力学知, 该质点系的质心坐标,11nkknkkkmmxx,11nkknkkkmmyynkknkkkmmzz11设物体占有空间域 ,),(zyx有连续密度函数则 公式 ,分别位于为为即:采用 “大化小, 常代变, 近似和, 取极限” 可导出其质心 机动 目录 上页 下页 返回 结束 将 分成 n 小块, ),(kkk将第 k 块看作质量集中于点),(kkk例如,nkkkkknkkkkkkvvx11),(),(令各小区域的最大直径,0zyxzyxzyxzyxxxddd),(ddd),(系的质心坐标就近似该物体的质心坐标.的质点,即得此质点在第
6、 k 块上任取一点机动 目录 上页 下页 返回 结束 同理可得zyxzyxzyxzyxyyddd),(ddd),(zyxzyxzyxzyxzzddd),(ddd),(,),(常数时当zyx则得形心坐标:,dddVzyxxx,dddVzyxyyVzyxzzddd的体积为zyxVddd机动 目录 上页 下页 返回 结束 若物体为占有xoy 面上区域 D 的平面薄片, ),(yx为yxyxyxyxxxDDdd),(dd),(yxyxyxyxyyDDdd),(dd),(,常数时,ddAyxxxDAyxyyDdd(A 为 D 的面积)得D 的形心坐标:则它的质心坐标为MMyMMx其面密度 xMyM 对
7、x 轴的 静矩 对 y 轴的 静矩机动 目录 上页 下页 返回 结束 4例例4. 求位于两圆sin2rsin4r和的质心. 2D解解: 利用对称性可知0 x而DyxyAydd1Drrddsin312rr dsin4sin22dsin956042956dsin295620437之间均匀薄片0dsin3143212oyxC机动 目录 上页 下页 返回 结束 Vzyxzzddd例例5. 一个炼钢炉为旋转体形, 剖面壁线的方程为, 30,)3(922zzzx内储有高为 h 的均质钢液,解解: 利用对称性可知质心在 z 轴上,,0 yx采用柱坐标, 则炉壁方程为,)3(922zzrzyxVdddhzzz
8、02d)3(9zDhyxzddd0因此故自重, 求它的质心.oxzh若炉不计炉体的其坐标为机动 目录 上页 下页 返回 结束 hzzz022d)3(9zDhyxzzddd0zyxdzdd)51233(923hhh225409043060hhhhhzoxzh)41229(923hhhV机动 目录 上页 下页 返回 结束 四、物体的转动惯量四、物体的转动惯量设物体占有空间区域 , 有连续分布的密度函数. ),(zyx该物体位于(x , y , z) 处的微元 vzyxyxd),()(22因此物体 对 z 轴 的转动惯量:zyxzyxyxIzddd),()(22zIdxyoz对 z 轴的转动惯量为
展开阅读全文