书签 分享 收藏 举报 版权申诉 / 37
上传文档赚钱

类型高等数学课件:7.5 常系数.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2046734
  • 上传时间:2022-01-21
  • 格式:PPT
  • 页数:37
  • 大小:2.13MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高等数学课件:7.5 常系数.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高等数学课件:7.5 常系数 高等数学 课件 7.5 系数
    资源描述:

    1、常系数 机动 目录 上页 下页 返回 结束 第五节线性微分方程 第七章 一、二阶常系数齐次线性微分方程二、二阶常系数线性非齐次微分方程三、欧拉方程 一、二阶常系数齐次线性微分方程),(0为常数qpyqypy xrey 和它的导数只差常数因子,代入得0)(2xre qprr02qrpr称为微分方程的特征方程特征方程,1. 当042qp时, 有两个相异实根,21r ,r方程有两个线性无关的特解:,11xrey ,22xrey 因此方程的通解为xrxreCeCy2121( r 为待定常数 ),xrer函数为常数时因为,所以令的解为 则微分其根称为特征根特征根.机动 目录 上页 下页 返回 结束 2.

    2、 当042qp时, 特征方程有两个相等实根21rr 则微分方程有一个特解)(12xuyy 设另一特解( u (x) 待定)代入方程得:1xre)(1urup0uq)2(211ururu 1r注意是特征方程的重根0 u取 u = x , 则得,12xrexy 因此原方程的通解为xrexCCy1)(21,2p.11xrey )(1xuexr0)()2(1211 uqrprupru机动 目录 上页 下页 返回 结束 3. 当042qp时, 特征方程有一对共轭复根irir21,这时原方程有两个复数解:xiey)(1)sin(cosxixexxiey)(2)sin(cosxixex 利用解的叠加原理 ,

    3、 得原方程的线性无关特解:)(21211yyy)(21212yyyixexcosxexsin因此原方程的通解为)sincos(21xCxCeyx机动 目录 上页 下页 返回 结束 小结小结:),(0为常数qpyqypy ,02qrpr特征方程:xrxreCeCy212121,:rr特征根21rr 实根 221prrxrexCCy1)(21ir,21)sincos(21xCxCeyx特 征 根通 解以上结论可推广到高阶常系数线性微分方程 .机动 目录 上页 下页 返回 结束 若特征方程含 k 重复根,ir若特征方程含 k 重实根 r , 则其通解中必含对应项xrkkexCxCC)(121xxCx

    4、CCekkxcos)( 121sin)(121xxDxDDkk则其通解中必含对应项)(01) 1(1)(均为常数knnnnayayayay特征方程: 0111nnnnararar),(均为任意常数以上iiDC推广推广:机动 目录 上页 下页 返回 结束 例例1.032 yyy求方程的通解.解解: 特征方程, 0322rr特征根:,3,121rr因此原方程的通解为xxeCeCy321例例2. 求解初值问题0dd2dd22ststs,40ts20ddtts解解: 特征方程0122rr有重根,121 rr因此原方程的通解为tetCCs)(21利用初始条件得, 41C于是所求初值问题的解为tets)2

    5、4(22C机动 目录 上页 下页 返回 结束 例例3.052)4( yyy求方程的通解. 解解: 特征方程, 052234rrr特征根:irrr21, 04,321因此原方程通解为xCCy21)2sin2cos(43xCxCex例例4.0)4()5( yy解方程解解: 特征方程:, 045rr特征根 :1, 054321rrrrr原方程通解:1CyxC223xC34xCxeC5(不难看出, 原方程有特解), 132xexxx推广 目录 上页 下页 返回 结束 02)(22222rr例例5. . )0(0dd444wxw解方程解解: 特征方程:44r即0)2)(2(2222rrrr其根为),1(

    6、22,1ir)1(24,3ir方程通解 :xew2)2sin2cos(21xCxCxe2)2sin2cos(43xCxC机动 目录 上页 下页 返回 结束 例例6.02)4( yyy解方程解解: 特征方程:01224rr0)1(22r即特征根为,2,1irir4,3则方程通解 :xxCCycos)(31xxCCsin)(42机动 目录 上页 下页 返回 结束 内容小结内容小结),(0为常数qpyqypy 特征根:21, rr(1) 当时, 通解为xrxreCeCy212121rr (2) 当时, 通解为xrexCCy1)(2121rr (3) 当时, 通解为)sincos(21xCxCeyxi

    7、r2, 1可推广到高阶常系数线性齐次方程求通解 .机动 目录 上页 下页 返回 结束 思考与练习思考与练习 求方程0 yay的通解 .答案答案:0a通解为xCCy21:0a通解为xaCxaCysincos21:0a通解为xaxaeCeCy21第九节 目录 上页 下页 返回 结束 备用题备用题,2cos,2,321xyexyeyxx求一个以xy2sin34为特解的 4 阶常系数线性齐次微分方程,并求其通解 .解解: 根据给定的特解知特征方程有根 :, 121 rrir24, 3因此特征方程为2) 1( r0)4(2r即04852234rrrr04852)4( yyyyy故所求方程为其通解为xCx

    8、CexCCyx2sin2cos)(4321机动 目录 上页 下页 返回 结束 )(xfyqypy ),(为常数qp二、二阶常系数线性非齐次微分方程根据解的结构定理 , 其通解为Yy *y非齐次方程特解齐次方程通解求特解的方法根据 f (x) 的特殊形式 ,*y给出特解的待定形式,代入原方程比较两端表达式以确定待定系数 . 待定系数法待定系数法机动 目录 上页 下页 返回 结束 )(xQex )()2(xQp)()(2xQqp)(xPemx(一)(一)型)()(xPexfmx 为实数 ,)(xPm设特解为, )(*xQeyx其中 为待定多项式 , )(xQ )()(*xQxQeyx )()(2)

    9、(*2xQxQxQeyx 代入原方程 , 得 )(xQ (1) 若 不是特征方程的根, , 02qp即则取),(xQm从而得到特解形式为. )(*xQeymx)()2(xQp)()(2xQqp)(xPm为 m 次多项式 .Q (x) 为 m 次待定系数多项式机动 目录 上页 下页 返回 结束 (2) 若 是特征方程的单根 , , 02qp,02 p)(xQ则为m 次多项式, 故特解形式为xmexQxy)(*(3) 若 是特征方程的重根 , , 02qp,02 p)(xQ 则是 m 次多项式,故特解形式为xmexQxy)(*2小结小结 对方程,)2, 1, 0()(*kexQxyxmk此结论可推

    10、广到高阶常系数线性微分方程 .)(xQ )()2(xQp)(xPm)()(2xQqp即即当 是特征方程的 k 重根 时,可设特解机动 目录 上页 下页 返回 结束 例例1.1332 xyyy求方程的一个特解.解解: 本题而特征方程为,0322rr不是特征方程的根 .设所求特解为,*10bxby代入方程 :13233010 xbbxb比较系数, 得330 b13210bb31,110bb于是所求特解为.31*xy0,0机动 目录 上页 下页 返回 结束 例例2. xexyyy265 求方程的通解. 解解: 本题特征方程为,0652 rr其根为对应齐次方程的通解为xxeCeCY3221设非齐次方程

    11、特解为xebxbxy210)(*比较系数, 得120 b0210bb1,2110bb因此特解为.)1(*221xexxy3, 221rr代入方程得xbbxb01022所求通解为xxeCeCy3221.)(2221xexx ,2机动 目录 上页 下页 返回 结束 例例3. 求解定解问题 0)0()0()0( 123yyyyyy解解: 本题特征方程为, 02323rrr其根为设非齐次方程特解为,*xby代入方程得, 12b故,*21xy0321CCC21322CC2, 1, 0321rrr故对应齐次方程通解为1CY xeC2xeC23原方程通解为x211Cy xeC2xeC23由初始条件得0432

    12、CC,0机动 目录 上页 下页 返回 结束 于是所求解为xeeyxx2141432解得)423(412xxeex41 143321CCC机动 目录 上页 下页 返回 结束 xxPxxPenlxsin)(cos)(对非齐次方程yqypy ),(为常数qpxRxRexymmxksincos*则可设特解:其中 为特征方程的 k 重根 ( k = 0, 1), ilnm,max上述结论也可推广到高阶方程的情形.机动 目录 上页 下页 返回 结束 (二)(二)型xxPxxPexfnlxsin)(cos)()(例例4. xxyy2cos 求方程的一个特解 .解解: 本题 特征方程, 2, 0故设特解为xd

    13、xcxbxay2sin)(2cos)(*不是特征方程的根,ii2代入方程得xxxadxcxcbxa2cos2sin)433(2cos)433(012r,)(xxPl, 0)(xPn比较系数 , 得9431,da.2sin2cos*9431xxxy于是求得一个特解13 a043cb03 c043ad0 cb机动 目录 上页 下页 返回 结束 例例5. xxyy3sin303cos189 求方程的通解. 解解: 特征方程为, 092r其根为对应齐次方程的通解为xCxCY3sin3cos21)3sin3cos(*xbxaxy比较系数, 得,5a,3b因此特解为)3sin33cos5(*xxxyir3

    14、2, 1代入方程:xaxb3sin63cos6所求通解为xCxCy3sin3cos21为特征方程的单根 ,i3)3sin33cos5(xxxxx3sin303cos18因此设非齐次方程特解为机动 目录 上页 下页 返回 结束 例例6.xyyysin2) 1 ()4( 解解: (1) 特征方程, 01224rr, 0)1(22r即有二重根, ir所以设非齐次方程特解为(*2xy )sincosxbxa(2) 特征方程, 024 rr0)1(22rr即有根irr4,32, 1, 0 xexyyxsin3)2()4( 利用叠加原理 , 可设非齐次方程特解为)(*2baxxyxec)sincos(xk

    15、xdx设下列高阶常系数线性非齐次方程的特解形式:机动 目录 上页 下页 返回 结束 内容小结内容小结xmexPyqypy)(. 1 为特征方程的 k (0, 1, 2) 重根,xmkexQxy)(*则设特解为sin)(cos)(. 2xxPxxPeyqypynlx 为特征方程的 k (0, 1 )重根, ixkexy*则设特解为sin)(cos)(xxRxxRmmnlm,max3. 上述结论也可推广到高阶方程的情形.机动 目录 上页 下页 返回 结束 思考与练习思考与练习时可设特解为 xxxfcos)() 1当xexxxf22cos)()2当xy *xbxacos)(*yxdxcxbxa2si

    16、n)(2cos)(xek2)(xfyy 时可设特解为 xxPxxPexfnlxsin)(cos)()(xkexy*lnm,max提示提示:xdcxsin)(1 . (填空) 设sin)(cos)(xxRxxRmm机动 目录 上页 下页 返回 结束 2. 求微分方程xeyyy 44的通解 (其中为实数 ) .解解: 特征方程,0442rr特征根:221 rr对应齐次方程通解:xexCCY221)(2时,xeAy令代入原方程得,2)2(1A故原方程通解为xexCCy221)(xe2)2(12时,2xexBy令代入原方程得,21B故原方程通解为xexCCy221)(xex221机动 目录 上页 下页

    17、 返回 结束 3. 已知二阶常微分方程xecybyay 有特解, )1 (2xxexey求微分方程的通解 .解解: 将特解代入方程得恒等式xxxxecexbaeaeba)1 ()2()1 (比较系数得01baca 201ba0a1b2c故原方程为xeyy2 对应齐次方程通解:xxeCeCY21xxexey原方程通解为xxeCeCy21xex机动 目录 上页 下页 返回 结束 机动 目录 上页 下页 返回 结束 三、欧拉方程三、欧拉方程 )(1) 1(11)(xfypyxpyxpyxnnnnnn)(为常数kp,tex 令常系数线性微分方程xtln即欧拉方程的算子解法欧拉方程的算子解法: )(1)

    18、 1(11)(xfypyxpyxpyxnnnnnn,tex 令则xyddxttyddddtyx dd122ddxyxttyxtdd)dd1(ddtytyxdddd1222计算繁! tyyxddtytyyxdddd222 机动 目录 上页 下页 返回 结束 ,ln xt 则,ddtD 记则由上述计算可知: yDyxyDyDyx 22, ), 3, 2(ddktDkkkyDD) 1(用归纳法可证 ykDDDyxkk) 1() 1()(于是欧拉方程 )(1) 1(11)(xfypyxpyxpyxnnnnnn)(11tnnnefybyDbyD转化为常系数线性方程:)(dddd111tnnnnnefyb

    19、tybty即机动 目录 上页 下页 返回 结束 例例1. .ln2ln2222的通解求方程xxyyxyx 解解:,tex 令,ln xt 则,ddtD 记则原方程化为ttyyDyDD222) 1(2亦即ttytyty22dd3dd222其根,2, 121rr则对应的齐次方程的通解为特征方程, 0232 rrttyDD2)23(22即 tteCeCY221机动 目录 上页 下页 返回 结束 的通解为41ln21ln212221xxxCxCy4121212221tteCeCytt换回原变量, 得原方程通解为设特解:CtBtAy2代入确定系数, 得4121212tty机动 目录 上页 下页 返回 结

    20、束 例例2.22的通解求方程xxyxyy 解解: 将方程化为xyyxyx22 (欧拉方程) ,ddtD 记则方程化为,tex 令teyDDD2)1) 1(即teyDD2) 12(2特征根:, 121 rr设特解:,2 tetAy 代入 解得 A = 1,ttetetCCy221)(xxxxCC221ln)ln(所求通解为 机动 目录 上页 下页 返回 结束 例例3.满足设函数)(xyy 1,ln5d)(321 xxttytyyxx,01xy且. )(xy求解解: 由题设得定解问题xyyxyx524 0) 1 (,0) 1 (yy,tex 令,ddtD 记则化为teyDDD54) 1(teyD5)4(2特征根: ,2ir设特解: ,teAy代入得 A1 机动 目录 上页 下页 返回 结束 得通解为tetCtCy2sin2cos21xxCxC1)ln2sin()ln2cos(21利用初始条件得21, 121CC故所求特解为xxxy1)ln2sin(21)ln2cos(机动 目录 上页 下页 返回 结束 思考思考: 如何解下述微分方程提示提示:)()()(212xfypyaxpyax axu先令)(dddd21222aufypuyupuyu,teu 令原方程直接令 teax第11节 目录 上页 下页 返回 结束 tDdd记)() 1(21aefypDpDDttDdd记

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高等数学课件:7.5 常系数.ppt
    链接地址:https://www.163wenku.com/p-2046734.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库