高等数学(上册)全册配套完整课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学(上册)全册配套完整课件.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 上册 配套 完整 课件
- 资源描述:
-
1、高等数学(上册)全册配套高等数学(上册)全册配套完整课件完整课件二、二、 连续与间断连续与间断 一、一、 函数函数 三、三、 极限极限 习题课习题课机动 目录 上页 下页 返回 结束 极限极限与连续与连续 第一章 )(xfy yxoD一、一、 函数函数1. 函数的概念定义定义:Df :R)(DfDxxfyyDf, )()( 定义域 值域图形图形:DxxfyyxC, )(),( 一般为曲线 )设,RD函数为特殊的映射:其中机动 目录 上页 下页 返回 结束 2. 函数的特性有界性 , 单调性 , 奇偶性 , 周期性3. 反函数)(:DfDf设函数为单射, 反函数为其逆映射DDff)(:14. 复
2、合函数给定函数链)(:11DfDf1)(:DDgDg则复合函数为 )(:DgfDgf5. 初等函数有限个常数及基本初等函数经有限次四则运算与复复合而成的一个表达式的函数.机动 目录 上页 下页 返回 结束 xxxff1211)()(,2)()(1xfxfxx解解: 利用函数表示与变量字母的无关的特性 .,1xxt,11tx代入原方程得,)()(1211tttff,111uux,11ux代入上式得,)()() 1(2111uuuuuff1,0 xx设其中).(xf求令即即令即画线三式联立1111)(xxxxf即xxxxxff) 1(2111)()(例例1.机动 目录 上页 下页 返回 结束 思考
3、与练习思考与练习1. 下列各组函数是否相同 ? 为什么? )arccos2cos()() 1 (xxf 1 , 1, 12)(2xxx与axaaxxxf,)()2(2)(21)(xaxax与0,0,0)()3(xxxxf)()(xffx 与相同相同相同相同相同相同机动 目录 上页 下页 返回 结束 2. 下列各种关系式表示的 y 是否为 x 的函数? 为什么?1sin1) 1 (xy, 0,cos,sinmax)2(2xxxy22,arcsin)3(xuuy不是不是40 x,cosx24 x,sin x是是不是不是提示提示: (2)y机动 目录 上页 下页 返回 结束 0,10,1)()4(3
4、3xxxxxf0, 10, 1)()2(xxxf1,41,2)()3(xxxf,2xxxyo4211, 11, 13xx1) 1(32xx,16xoxy110 x1xRx3. 下列函数是否为初等函数 ? 为什么 ?0,0,)() 1 (xxxxxf2xxy1以上各函数都是初等函数 .机动 目录 上页 下页 返回 结束 4. 设,0)(,1)(,)(2xxxfexfx且求)(x及其定义域 .5. 已知8,)5(8,3)(xxffxxxf, 求. )5(f6. 设,coscsc)sin1(sin22xxxxf求. )(xf由)(2xex1得,)1ln()(xx0,(x,e)(fx2xf)(x4.
5、解解:e)(x2机动 目录 上页 下页 返回 结束 f5. 已知8,)5(8,3)(xxffxxxf, 求. )5(f解解:)5(f) (f310)10(f)7(f f)12(f) (f312)9(f66. 设,coscsc)sin1(sin22xxxxf求. )(xf解解:1sin)(sin2sin1sin12xxfxx3)(sin2sin1xx3)(2xxf机动 目录 上页 下页 返回 结束 二、二、 连续与间断连续与间断1. 函数连续的等价形式)()(lim00 xfxfxx)()(,000 xfxxfyxxx0lim0yx)()()(000 xfxfxf,0,0,0时当 xx有)()(
6、0 xfxf2. 函数间断点第一类间断点第二类间断点可去间断点跳跃间断点无穷间断点振荡间断点机动 目录 上页 下页 返回 结束 有界定理 ; 最值定理 ; 零点定理 ; 介值定理 .3. 闭区间上连续函数的性质例例2. 设函数)(xf,2)cos1 (xxa0 x,10 x, )(ln2xb0 x在 x = 0 连续 , 则 a = , b = .提示提示:20)cos1 (lim)0(xxafx2a221cos1xx)(lnlim)0(20 xbfxblnbaln122e机动 目录 上页 下页 返回 结束 ) 1)()(xaxbexfx有无穷间断点0 x及可去间断点, 1x解解:为无穷间断点
7、,0 x) 1)(lim0 xaxbexx所以bexaxxx) 1)(lim0ba101,0ba为可去间断点 ,1x) 1(lim1xxbexx极限存在0)(lim1bexxeebxx1lim例例3. 设函数试确定常数 a 及 b .机动 目录 上页 下页 返回 结束 例例4. 设 f (x) 定义在区间),(上 ,有yx,)()()(yfxfyxf, 若 f (x) 在连续,0 x提示提示:)(lim0 xxfx)()(lim0 xfxfx)0()(fxf)0( xf)(xf且对任意实数证明 f (x) 对一切 x 都连续 .机动 目录 上页 下页 返回 结束 上连续, 且 a c d b
8、,例例5. 设)(xf在,ba必有一点证证:, ,ba使)()()()(fnmdfncfm, ,)(baCxfMbaxf上有最大值在,)()()(dfncfm)()()(fnmdfncfm即由介值定理,使存在, ,ba证明:Mnmdfncfmm)()()()()()(fnmdfncfm,m及最小值故 即 mnm)(Mnm)(证证:补充题补充题. 证明: 若 令,)(limAxfx则给定,0,0X当Xx 时, 有AxfA)(又, ,)(XXCxf根据有界性定理,01M, 使,)(1XXxMxf取1,maxMAAM则),(,)(xMxf)(xf在),(内连续,)(limxfx存在, 则)(xf必在
9、),(内有界.)(xfXXA1Myox机动 目录 上页 下页 返回 结束 三、三、 极限极限1. 极限定义的等价形式 (以 为例 )0 xx Axfxx)(lim00)(lim0Axfxx(即 为无穷小)Axf)(, )(0 xxxnnn有Axfnn)(limnx,0 xAxfxf)()(00机动 目录 上页 下页 返回 结束 2. 极限存在准则及极限运算法则3. 无穷小无穷小的性质 ; 无穷小的比较 ;常用等价无穷小: 4. 两个重要极限 6. 判断极限不存在的方法 xsin;xxtan;xxcos1;221xxarctan;xxarcsin;x)1ln(x;x1xe;x1xa;lnax1)
10、1 (x;x机动 目录 上页 下页 返回 结束 5. 求极限的基本方法 例例6. 求下列极限:)sin1(sinlim) 1 (xxxxxxsin112lim)2(xxxxcot110lim)3(提示提示: xxsin1sin) 1 (21cos21sin2xxxx21cos)1(21sin2xxxx无穷小有界机动 目录 上页 下页 返回 结束 令1lim)2(x1 xt0limt) 1(sin)2(ttt0limttttsin)2( 0limtttt)2( 2xxsin12机动 目录 上页 下页 返回 结束 0lim)3(xxxxcot110limxxxxcot)121(e)1(ln12xx
11、xx122e则有)()(1lim0 xvxxxu复习复习: 若,0)(lim0 xuxx,)(lim0 xvxxe)(1ln)(lim0 xuxvxxe)()(lim0 xuxvxx)(lim12sincos0 xxxxx1机动 目录 上页 下页 返回 结束 Oxy331xy例例7. 确定常数 a , b , 使0)1(lim33bxaxx解解: 原式可变形为0)1(lim313xbxxax0)1(lim313xbxxa故,01a于是,1a而)1(lim33xxbx2333231)1 (1limxxxxx0 xy例例8. 当0 x时,32xx 是x的几阶无穷小?解解: 设其为x的k阶无穷小,则
12、kxxxx320lim0 C因kxxxx320lim3320limkxxxx 330)1 (lim2321xxkx故61k机动 目录 上页 下页 返回 结束 思考与练习思考与练习1. 求的间断点, 并判别其类型.解解:) 1)(1(sin)1 ()(xxxxxxf) 1)(1(sin)1 (lim1xxxxxx1sin21 x = 1 为第一类可去间断点)(lim1xfx x = 1 为第二类无穷间断点, 1)(lim0 xfx, 1)(lim0 xfx x = 0 为第一类跳跃间断点机动 目录 上页 下页 返回 结束 2. 求.sine1e2lim410 xxxxx解解:xxxxxsine1
13、e2lim410 xxxxxxsin1ee2lim4340e1xxxxxsine1e2lim410 xxxxxsine1e2lim4101原式 = 1 (2000考研)注意此项含绝对值机动 目录 上页 下页 返回 结束 3. 求.)321 (lim1xxxx解解: 令xxxxf1)321 ()(xxx11)()(33231则)(xf3x133利用夹逼准则可知.3)(limxfx引引 言言一、什么是高等数学一、什么是高等数学 ?初等数学 研究对象为不变的量(常量)常量),所涉及的运算是常量之间的算术算术运算.高等数学 研究对象为变动的量(变量)变量),基本运算是变量的极限极限运算. 高等数学是一
14、门以变量作为研究对象、以极限方法作为基本研究手段的数学学科. 整个高等数学是建立在极限理论的基础之上的.1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分(上册)(下册)3. 向量代数与空间解析几何4. 无穷级数5. 常微分方程主要内容主要内容多元微积分二、如何学习高等数学二、如何学习高等数学 ?1. 认识高等数学的重要性, 培养浓厚的学习兴趣.2. 注意学习方法.比如多听,多练,多想工科专业数学基础课,考研教材教材:主要参考书主要参考书:高等数学学习与提高高等数学学习与提高(上册)(上册)高等数学高等数学 (上册)(上册)武汉大学数学与统计学院 主编高等教育出版社湛少锋,
15、 胡新启 编武汉大学出版社第一章分析基础分析基础 函数函数 极限极限 连续连续 研究对象 研究方法 研究桥梁极限与连续 第一章 二、映射二、映射 三、函数三、函数 一、集合一、集合第一节机动 目录 上页 下页 返回 结束 预备知识元素 a 属于集合 M , 记作元素 a 不属于集合 M , 记作一、一、 集合集合1. 定义及表示法定义及表示法定义定义 1. 具有某种特定性质的事物的总体称为集合集合.组成集合的事物称为元素元素.不含任何元素的集合称为空集空集 , 记作 . Ma( 或Ma) .Ma注注: M 为数集 *M表示 M 中排除 0 的集 ;M表示 M 中排除 0 与负数的集 .机动 目
16、录 上页 下页 返回 结束 表示法表示法:(1) 列举法:按某种方式列出集合中的全体元素 .例例: 有限集合naaaA,21niia1自然数集,2,1,0Nnn(2) 描述法: xM x 所具有的特征例例: 整数集合 ZxNx或Nx有理数集qpQ,N,Zqp p 与 q 互质实数集合 Rx x 为有理数或无理数开区间 ),(xbabxa闭区间 ,xbabxa机动 目录 上页 下页 返回 结束 )(aa ),(Uxa ),xbabxa ,(xbabxa无限区间 ),xaxa ,(xb bx ),(xRx点的 邻域邻域a ),(xaaxa xaxax0其中, a 称为邻域中心 , 称为邻域半径 .
17、半开区间去心 邻域邻域左左 邻域邻域 :, ),(aa右右 邻域邻域 :. ),(aa机动 目录 上页 下页 返回 结束 是 B 的子集子集 , 或称 B 包含 A ,2. 集合之间的关系及运算集合之间的关系及运算定义定义2 .则称 A.BA若BA,AB 且则称 A 与 B 相等相等,.BA 例如 ,ZNQZRQ显然有下列关系 :;) 1 (AA;AA BA)2(CB 且CA , ,A若Ax,Bx设有集合,BA记作记作必有机动 目录 上页 下页 返回 结束 AcABB定义定义 3 . 给定两个集合 A, B, 并集 xBAAx交集 xBAAxBx且差集 xBAAxBx且定义下列运算:ABBA余
18、集)(ABBABcA其中直积 ),(yxBA,AxBy特例:RR记2R为平面上的全体点集ABABBABA机动 目录 上页 下页 返回 结束 Bx或二、二、 映射映射1. 映射的概念映射的概念 某校学生的集合某校学生的集合学号的集合学号的集合按一定规则查号某班学生的集合某班学生的集合某教室座位某教室座位的集合的集合按一定规则入座机动 目录 上页 下页 返回 结束 引例引例1. 引例引例2.xxysinRxRy引例引例3.oxy1QP1),(22yxyxC11), 0(yyY(点集)(点集)CP点向 y 轴投影YQ投影点xysinxy oxy1x2xxxysin机动 目录 上页 下页 返回 结束
19、定义定义4. 设 X , Y 是两个非空集合, 若存在一个对应规则 f , 使得,Xx有唯一确定的Yy与之对应 , 则称 f 为从 X 到 Y 的映射映射, 记作.:YXf元素 y 称为元素 x 在映射 f 下的 像像 , 记作).(xfy 元素 x 称为元素 y 在映射 f 下的 原像原像 .集合 X 称为映射 f 的定义域定义域 ;Y 的子集)(XfXxxf)(称为 f 的 值域值域 .注意注意: 1) 映射的三要素 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 . XYfxy机动 目录 上页 下页 返回 结束 对映射YXf:若YXf)
20、(, 则称 f 为满射满射; XYf)(Xf若,2121xxXxx有 )()(21xfxf则称 f 为单射单射;若 f 既是满射又是单射, 则称 f 为双射双射 或一一映射一一映射. XY)(Xff引例引例2, 3机动 目录 上页 下页 返回 结束 引例引例2引例引例2例例1.三角形)(三角形集合海伦公式bcaS面积),0(例例2. 如图所示,Sxyoxey x),0 x对应阴影部分的面积),0S则在数集),0自身之间定义了一种映射(满射满射)例例3. 如图所示,xyo),(yxrcosrx sinry 2R),(yxf)2,0),0),(r:f则有(满射满射) (满射满射)机动 目录 上页
21、下页 返回 结束 X (数集 或点集 ) 说明说明:在不同数学分支中有不同的惯用 X ( ) Y (数集)机动 目录 上页 下页 返回 结束 f f 称为X 上的泛函X ( ) X f f 称为X 上的变换 R f f 称为定义在 X 上的为函数映射又称为算子. 名称. 例如, 2. 逆映射与复合映射逆映射与复合映射(1) 逆映射的定义 定义定义: 若映射)(:DfDf为单射, 则存在一新映射,)(:1DDff使习惯上 ,Dxxfy, )(的逆映射记成)(,)(1Dfxxfy例如, 映射, 0,(,2xxy其逆映射为,xy),0 x)(DfDf1f,)(, )(1xyfDfy其中,)(yxf称
22、此映射1f为 f 的逆映射 .机动 目录 上页 下页 返回 结束 (2) 复合映射机动 目录 上页 下页 返回 结束 1Dfg手电筒DD2D2D引例. 复合映射 定义. Dxg)()(Dgxgu1Duf)(ufy 则当1)(DDg由上述映射链可定义由 D 到 Y 的复, )(xgfy .),(Dxxgf设有映射链记作)(1DfY 合映射 ,时,或)(1DfY )(ufy )(xgf1DDx)(xgu gfgf )(Dg机动 目录 上页 下页 返回 结束 注意: 构成复合映射的条件 1)(DDg不可少.以上定义也可推广到多个映射的情形.定义域三、函数三、函数1. 函数的概念函数的概念 定义定义4
23、. 设数集,RD则称映射R:Df为定义在D 上的函数 , 记为Dxxfy, )( f ( D ) 称为值域 函数图形函数图形: ),(yxC Dx, )(xfy xy) ,(baDabxy)(DfD机动 目录 上页 下页 返回 结束 自变量因变量DxfDxxfyyDfy),()(对应规则)(值域)(定义域)例如, 反正弦主值xxfyarcsin)(, 1, 1D,)(22Df 定义域定义域 对应规则对应规则的表示方法: 解析法、图象法、列表法使表达式及实际问题都有意义的自变量集合.定义域值域xyoxy xxf)(又如, 绝对值函数0,xx0,xx定义域RD值 域),0)(Df机动 目录 上页
24、下页 返回 结束 例例4. 已知函数 1,110,2)(xxxxxfy解解:)(21f及. )(1tf写出 f (x) 的定义域及值域, 并求f (x) 的定义域 ),0D值域 ),0)(Df21212)(f2)(1tf10t,11t1t,2txyOxy2xy112. 函数的几种特性函数的几种特性设函数, )(Dxxfy且有区间.DI (1) 有界性有界性,Dx,0M使,)(Mxf称 )(xf, Ix,0M使,)(Mxf称 )(xf说明说明: 还可定义有上界、有下界、无界 (2) 单调性单调性为有界函数.在 I 上有界. ,Dx使若对任意正数 M , 均存在 ,)(Mxf则称 f ( x )
25、无界无界.称 为有上界有上界称 为有下界有下界,)(,Mxf),(,xfM 当,21Ixx21xx 时, )()(21xfxf若称 )(xf为 I 上的, )()(21xfxf若称 )(xf为 I 上的单调增函数 ;单调减函数 .xy1x2x机动 目录 上页 下页 返回 结束 xyoxx(3) 奇偶性奇偶性,Dx且有,Dx若, )()(xfxf则称 f (x) 为偶函数;若, )()(xfxf则称 f (x) 为奇函数. 说明说明: 若)(xf在 x = 0 有定义 ,. 0)0(f)(xf为奇函数奇函数时,则当必有例如,2)(xxeexfyxch 偶函数xyoxexexych双曲余弦 记机动
展开阅读全文