信号与系统第十章课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《信号与系统第十章课件.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号 系统 第十 课件
- 资源描述:
-
1、1CHAPTER 5THE DISCRETE-TIMEFOURIER TRANSFORM Chapter 5 The Discrete-Time Fourier Transform2 Chapter 5 The Discrete-Time Fourier Transform nh nynznz nzzH Eigenfunction特征函数特征函数Eigenvalue (特征值)特征值) nnznhzHConsider a discrete-time LTI system: NnxnxN/20 nNjkkNknjkkNkeaeanx 20 NjkNjkkNknjkjkkNkeeHaeeHany
2、22003 Chapter 5 The Discrete-Time Fourier TransformDiscrete-time Fourier transform pair deeXnxnjj221 n jnjenxeX Synthesis equationAnalysis equation4 Chapter 5 The Discrete-Time Fourier Transformxnak5 Chapter 5 The Discrete-Time Fourier Transform6 Chapter 5 The Discrete-Time Fourier TransformConverge
3、nce Issues Associated with the Discrete-Time Fourier Transform nxn1. is absolutely summable, nx2. has finite energy, nx 2 nxn jjjeHeXeY j-eYny1F FDiscrete-time Fourier Analysis7 Chapter 10 The Z-TransformCHAPTER 10THE Z-TRANSFORM8 nnznxzX10.1 The Z-Transform zXnxZ Z jrez njnrenxzX njnnernx nrnxzXF F
4、 Chapter 10 The Z-Transform n jnjenxeX 9 Chapter 10 The Z-Transform zROC1 jezjzXeX01Z-plane1zunit circleExample 10.1 nuanxn nnnznuazXnnaz10 111azzX11az 111aznuanZ Zaz 0aaz 10 Chapter 10 The Z-TransformExample 10.2 1nuanxn nnnznuazX1nnaz11mmmnza11 1111za 111azzX11za1111aznuanZ Zaz 0aaz 11 Chapter 10
5、The Z-TransformExample 10.3 nununxnn2/163/17 131173/17znunZ Z 121162/16znunZ Z31z21z 1121311617zzzX 2/13/12/3zzzzzX21z021312321z12 Chapter 10 The Z-TransformExample 10.4 nunnxn4/sin3/1 nuejejnxnjnnjn4/4/3/1213/121 nuejnj4/3121 14/3112/1zejj Z nuejnj4/3121 14/3112/1zejj Z31314/ jez31314/ jez 4/4/3131
6、23/ jjezezzzX31z13 Chapter 10 The Z-Transform10.2 The Region of Convergence for the Z-TransformProperty 1: The ROC of X(z) consists of a ring in the z-plane centered about the origin. nrnxzXF F nnrnxProperty 2: The ROC does not contain any poles.14 Chapter 10 The Z-TransformProperty 3: If is of fini
7、te duration, then the ROC is the entire z-plane, except possibly z=0 and/or z=. nx 21;,0NnNn nx nNNnrnx21ROC zN01ROC 002zN nNnnNnznxznxzX2101positive powers of znegative powers of z15 Chapter 10 The Z-TransformExample 10.5 1nnznn Z0znnznn11 Z1 z0zzznnnn11 Zzz and 016 Chapter 10 The Z-TransformExampl
8、e 10.6 Nnunuanxn nnNnzazX10 1111azazzXN azzazzXNNN1 kjNNjeare2Nkjark/2 Zeros:(N-1)st order polea0z17Property 4: If is right sided, 1,0Nnnx nx Chapter 10 The Z-TransformROC 0rROC0rzmaxrz If is right sided, nx01NFurthermore, ifROCz01NIf is not causal, nx nnnNnznxznxzX011positive powers of z18 Chapter
9、10 The Z-TransformExample Nnuanxn nnNnzazXNmmNmnaz10 111azazzXNazN 0zazN and 019Property 5: If is left sided, 1,0Nnnx nx Chapter 10 The Z-TransformROC 0rROC0rzminrz If is left sided, nx01NFurthermore, ifROCz 001NIf is not anticausal, nx nNnnnznxznxzX110negative powers of z20 Chapter 10 The Z-Transfo
10、rmExample Nnuanxn nnNnzazXmNmmnza1 zazazXN111 00NNNkkNkmza10az 00NNaz 0 21 Chapter 10 The Z-TransformProperty 6: If is two sided, nxROC 0r021rrzrThe ROC of X(z) isExample 10.7 0bbnxn , 1nubnubnxnn1111zbbz1111bzbz 10 b 1111111zbbzzX1b X(z) does not exist.bzb122 Chapter 10 The Z-Transform 11211131zzzX
11、Example 23/12zzz2z is right sided nx023102310231231 z is two sided nxis left sided nx31z 23 Chapter 10 The Z-TransformBasic Z-Transform pairs: 01zn Z 111aznuanZ Zaz 1111aznuanZ Zaz 111znuZ1z1111znuZ1z24 Chapter 10 The Z-Transform10.3 The Inverse Z-Transform deeXnxnjj221 nrnxzXF F dezXrnxnjn221 derzX
12、nxnjn221 jrez jzddjredzj dzzzXjnxn 121 nz25 Chapter 10 The Z-Transform1. Partial-Fraction ExpansionExample 10.9 1113/114/116/53zzzzXDetermine for all possible ROC. nx 113/114/11zzzXSolution 141z31z12Solution 2 3/14/16/532zzzzzX 3/14/16/53zzzzzX3/124/11zz26 Chapter 10 The Z-Transform 113/1124/111zzzX
13、31z 3141 z 41z nunxn4/1 nun3/12 nunxn4/113/12nun 14/1nunxn13/12nun27 Chapter 10 The Z-Transform2. Power-Series Expansion (幂级数展开法)幂级数展开法) nnznxzX 1021012zxzxzxzxzXPower-Series of z-1 12324zzzXExample 10.12 z0 otherwise , 0 1n , 3 0n , 2 -2n , 4 nx 13224nnnnx 28 Chapter 10 The Z-Transform 111azzXaz Ex
14、ample 10.13 Consider 11az111az11az1az221zaaz22za22za3322zaza zX33 za nnanxn000 nuanxn29 Chapter 10 The Z-Transform 111azzXaz Example 10.14 Consider 11az1za11za1221zaza22za3322zaza zX33za nnanxn001 - 1nuanxnza122za33za30 Chapter 10 The Z-Transform azazzX ,1ln1Example 10.14 Consider the z-transform11a
15、zaz nxxxxxnn 1321321ln11x if nzazXnnnn111az otherwise 0111 nnanxnn 1nunanxn31 Chapter 10 The Z-Transform10.4 Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot zROC1 jezjzHeH iniimizzMzH11 ijniijmijeeMeH 11iiije Pole vector:ijiijeAe Zero vector:ijiijeBe iAije iBii1z je32 Chapter 1
16、0 The Z-Transform11AeHj Example Consider a first-order system 12/111zzH21z nmjAAABBBMeH2121 nmjH 212111 jH2/101A11B1z33 Chapter 10 The Z-Transform10.5 Properties of the z-Transform10.5.1 Linearity 222111R;zXnxR;zXnx ZZ zbXzaXnbxnax2121Z21RRROC 1111aznuanxnZaz 12nuanxnnnnza1Z1111azaz nxnx211Z0z34 Cha
17、pter 10 The Z-Transform10.5.2 Time Shifting RROCzXnx Z RROCzXznnxn Z00Consider z=0 or z= 111aznuanxnZaz 111nuanxn11azzZz and az 1111aznuanxnZaz 122nuanxn121azzZaz 035 Chapter 10 The Z-Transform mNnnxm 0Example 0zzmNnmN Z NmNmzzzX110 1NNzzzXZeros: z=01102,N-, kezNkjk Poles:1z1Nst order zero 36 Chapte
18、r 10 The Z-Transform10.5.3 Scaling in the z-Domain RROCzXnx Z RzROCzzXnxzn000/ ZPoles of : zXkjkkerz Poles of :0/ zzX000 kjkkerrzzSpecially ,00 jez nxenj0 RROCzeXj Z0 37 Chapter 10 The Z-Transform 111znuZ1z nuenj0 Z e-zj-0111 1z nuenj0 Z e-zj-0111 1z nun0cos Z e-ze-zj-j-001112/112/1 zz-z-20101cos21c
19、os1 1z nunan0cos Z zaaz-az-220101cos21cos1 az 38 Chapter 10 The Z-Transform10.5.4 Time Reversal RROCzXnx ZRROCzXnx1/1 ZPoles of : zXkjkkerz Poles of :zX/1kjkkerz 1139 Chapter 10 The Z-Transform 111znuZ1zznu11Zzznu11Z1z111z1zTime ReversalTime ShiftingScaling in the z-Domain1nuan111azZaz 40 Chapter 10
20、 The Z-Transform10.5.5 Time Expansion otherwise , 0 of multiple a is if knknxnxk/ RROCzXnx Z kkkRROCzXnx/1 Z Znxk nknznx kmmzmx mkmzmx kzXkmn kkRz/1/10Rz 041 Chapter 10 The Z-Transform10.5.6 Conjugation RROCzXnx Z RROCzXnx Z nnznxzX nnznxzXIf is real , nx nxnx zXzX实序列实序列 的复极点共轭成对出现。的复极点共轭成对出现。 nx42
21、Chapter 10 The Z-Transform10.5.7 The Convolution Property 222111R;zXnxR;zXnx ZZ zXzXnxnx2121Z21RRROC nxnx21Z Z nnnnznxznx21Example 10.15 1nnnh First Differencing一阶差分一阶差分 011z zzH R OC ZRzXz11 1nxnxExceptz=0 ,z=43 Chapter 10 The Z-TransformExample 10.16 nunhConsider a summation kxnunxnk 1111z zzH nun
展开阅读全文