信号与系统第三章课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《信号与系统第三章课件.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号 系统 第三 课件
- 资源描述:
-
1、1Fourier Series Representationsof Periodic SignalsChapter 32 Chapter 3 Fourier Series tyste th3.2 The Response of LTI Systems to Complex ExponentialsLTI 系统对复指数信号的响应系统对复指数信号的响应1. Continuous-time system thetyst dehts dehesst Defining dtethsHstste stesH Eigenfunction特征函数特征函数Eigenvalue (特征值)特征值) sstee与时
2、间无关与时间无关 steth3与时间无关与时间无关 Chapter 3 Fourier Series nh nynz2. Discrete-time system nhznyn knkzkh kknzkhz nz nzzH Eigenfunction特征函数特征函数Eigenvalue (特征值)特征值) nnznhzHDefining nznh4 Chapter 3 Fourier Series nkkkzanx nkkkkzzHany tskktskkkesHaea kk tx ty tsktskkesHeContinuous-time system nkknkzzHz Discrete-
3、time systemParticularly tjtjejHe Fourier AnalysisnjjnjeeHe Fourier Analysis5 Chapter 3 Fourier SeriesExample 3.1Consider an LTI system : 3tth 3txty tjetx 2 1 dtethsHst S 2tjetx tjjsesH2232tje 37cos34cos7cos4cos 2tttytttx 21212121 7 7 4 4tjtjtjtjeeeetxtjjee41221tjjee72121tjjee41221tjjee72121 32tjetyd
4、tetst3 se3tjjee266 Chapter 3 Fourier Series3.3 Fourier Series Representation(傅立叶级数)(傅立叶级数) of Continuous-time Periodic Signals3.3.1 Linear Combinations (线性组合)(线性组合)of Harmonically Related Complex Exponentials txTtx0002T Fundamental frequency tjkket 0 , 2, 1, 0k tjkkkeatx0 Fourier SerieskaFourier Ser
5、ies Coefficients Spectral Coefficients (频谱系数)(频谱系数)0aConstantComponent 1aFundamentalComponent 2aSecond HarmonicComponent 7 Chapter 3 Fourier SeriesExample 3.2 tjkkkeatx 233 3/1 , 2/14/1 , 13210aaaa tjtjtjtjtjtjeeeeeetx 6 6 4 4 2 23121411 ttttx 6cos324cos2cos211Consider a real periodic signal txtxtjk
6、kktjkkkeaea00 tjkkkea0 real periodickkaa txtjkkkea0 8 Chapter 3 Fourier Series tjkkkeatx0 tjkkea0 tjkkkeaatx0Re210 kjkkeAa 1 tjkjkkeeAatxk0Re210 kkktkAatx 010cos2 kkkjCBa 2 tjkkkkejCBatx0Re210 tkCtkBatxkkk0010sincos2 tjkktjkkkeaeaa0010 9 Chapter 3 Fourier SeriesExample :Consider an LTI system for wh
7、ich the inputand the impulse response determine the output ttx2cos211 tuetht ty tjtjtjeeetx 2 2041 dtetuejHtjt 0 11 jejHtj11 j tjejHty 00 21412141122jejetytjtjdteetjt 0 0tjejH 2241 tjejH 2241 10 Chapter 3 Fourier Series tjkkkeatx0 tjkkkejkHaty00 3.3.2 Determination of Fourier Series Representation t
8、jkket 0 , 2, 1, 0k002 T dtedtttTtnkjTnk00000 nknk 0 T 0010000Ttnkjnkenkj tjkkkeatx0 dtetxtjnT000 dteeadtetxtjntjkTkktjnT0000000 0TandteeatjntjkkkT0000 11 Chapter 3 Fourier Series dtetxTatjnTn00 0 01 tjkkkeatx0 dtetxTatjkTk0001 Synthesis equation综合公式综合公式Analysis equation分析公式分析公式Specially dttxTaT0 0 0
9、01Average valueExample tjtjejejt002121sin 10 tjtjeet002121cos 20 1 0 21 21 11kajajak-otherwise 0 1k 1/2 ka12 Chapter 3 Fourier SeriesExample 3.5 Periodic square wave defined over one period as 2/ t T 0 t 1 11TTtx1 tx-T -T/2 T1 0 T1 T/2 T t dttxTaTT2/ /2- 01dteTatjkTTk011 - 1 1100TTtjkTjke TkTkak010s
10、in2 Defining xxxcsinsin101sin2TkcTTak 0 whenk1T1TTjktkj00sin2 kTk10sinTT1213 Chapter 3 Fourier Series101sin2TkcTTak 011sin2 kTcT11sin2TcT the envelope(包络包络) of kTa 11sinTTc211sinTTc311sinTTc0sin11TkTcT1固定,固定, 的包络的包络 固定固定kTa11sin2TcT14 Chapter 3 Fourier SeriesTT/20 谱线变密谱线变密Figure 4.2 14 aTT 18 bTT 11
11、6 cTT 15 Chapter 3 Fourier SeriesExample Periodic Impulse Trains (周期冲激串周期冲激串) nTttxn txtT0TT2T2 1 dtetTatjkTTk02/ 2/- 1 21jktTkx teT kaT1 -0 0 0 202 2/T/T, 2, 1, 0 1kTak 212jktTky tHjkeTT 16 Chapter 3 Fourier Series3.4 Convergence(收敛)(收敛) of the Fourier Series1. Approximation(近似性近似性) tjkkNNkNeatx0 t
12、xtxteNNError 1NEN dtetxTaatjkTkk01 2 dtteENTN2Energy ktjkkeatxte0 02dtteTEN最小最小0 N NE dtteteTNN17ka Chapter 3 Fourier Series2. Dirichlet Conditions:Condition 1 dttxT dtetxTatjkTk01 dttxTT1 1T , 1t0 , /1ttx18 Chapter 3 Fourier SeriesCondition 2. In any finite interval , is of bounded variation. tx 1T
13、 , 1t0 , /2sinttx 19 Chapter 3 Fourier SeriesCondition 3. In any finite interval , there are only a finite number of discontinuities.20 Chapter 3 Fourier SeriesGibbs Phenomenon: Figure 3.921 Chapter 3 Fourier Series3.5 Properties of Continuous-Time Fourier Series3.5.1 Linearity kkbtyatxFSFS kkkBbAac
14、tBytAxtzFS3.5.2 Time Shifting katxFS00FS0tjkkeattx dtettxTbtjkTk001 deexTtjkjkTtt0000100tjkkea 22 txtx3.5.3 Conjugation and Conjugate Symmetry(共轭及共轭对称性)(共轭及共轭对称性) kkatxatxFSFS Chapter 3 Fourier Series kkaa txtxkkaaor Particularly 00aa kj akkaa eis real0akkaakj akkaaekj akkaa ekkaa 23 Chapter 3 Fouri
15、er Series3.5.4 Time Reversal katxFSkatxFStjkkkeatx0 tjmmmeatx0 mktx Fourier Series Coefficients of kkaakkaa txtxkkaa txtxreal even txkareal eventjmmmea0 24 Chapter 3 Fourier Serieskkaakkaa txtx0kkaa txtxreal odd txkaPurely imaginary odd3.5.5 Time Scaling tjkkkeatx0 tajkkkeaatx0 0 kak0 akak25 Chapter
16、 3 Fourier Series3.5.6 Multiplication(相乘)(相乘) kkbtyatxFSFS tytx3.5.7 Parsevals Relation(帕兹瓦尔关系式)(帕兹瓦尔关系式) 221kkTadttxT dttxtxTdttxTTT112tjkkkTeaT01 nnkkaaT11 knkn ka aTT2kkaFSkmk mmha bConvolution Sum dteatjnnn0 Ttjntjkdtee00 26kajk0 Chapter 3 Fourier Series 221kkTadttxT2kaAverage Powerof kth harmon
展开阅读全文