信号处理课件:chapter 6 Wigner Distribution Function.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《信号处理课件:chapter 6 Wigner Distribution Function.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号处理课件:chapter Wigner Distribution Function 信号 处理 课件 chapter
- 资源描述:
-
1、117V. Wigner Distribution Function Definition 1: Definition 2: Another way for computation Definition 1:Definition 2:222jfxWt fx txted*,/*,/ 2/ 2jxWtx txtedV-A Wigner Distribution Function (WDF) 222jtxWt fXfXfed*,/22jtxWtXXed*,/ where X(f) is the Fourier transform of x(t)118Main ReferenceRef S. Qian
2、 and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Chap. 5, Prentice Hall, N.J., 1996. Other ReferencesRef E. P. Wigner, “On the quantum correlation for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749-759, 1932. Ref T. A. C. M. Classen and W. F. G. Mecklenbrauker, “The W
3、igner distributionA tool for time-frequency signal analysis; Part I,” Philips J. Res., vol. 35, pp. 217-250, 1980. Ref F. Hlawatsch and G. F. BoudreauxBartels, “Linear and quadratic time-frequency signal representation,” IEEE Signal Processing Magazine, pp. 21-67, Apr. 1992.Ref R. L. Allen and D. W.
4、 Mills, Signal Analysis: Time, Frequency, Scale, and Structure, Wiley-Interscience, NJ, 2004.119The operators that are related to the WDF:(a) Signal auto-correlation function: (b) Spectrum auto-correlation function: (c) Ambiguity function (AF): ,/2/2xCtx txt,/2/2xSfX fXf*2,/2/2jtxAx txtedt Ax(, )FTf
5、FTt FTf IFTtSx(, f )IFTtIFTf Cx(t, )Wx(t, f )120V-B Why the WDF Has Higher Clarity?If x(t) = exp(j2 h t)2(/2)2(/2)2222(),()jh tjh tjfxjhjfjfhWt feeedeededfh Comparing: for the case of the STFT Due to signal auto-correlation function121If x(t) = (t) 22442242244jfxjfjt fjt fWt fttedttedt et et ,/122If
6、 h(t) = g(t) + s(t) cross terms*2,/2/2jfxWt fx txted *2222222,/2/2/2/2/2/2|/2/2|/2/2 /2/2/2/2 |,|,jfhjfjfgsWt fh thtedg ts tgtstedg tgts tstg tstgts tedWt fW t 2 /2/2/2/2jffg tstgts ted V-C The WDF is not a Linear Distribution123 for 9 t 1, s(t) = 0 otherwise, f (t) = s(t) + r(t) 橫軸: t-axis, 縱軸: f -
7、axis 2exp/103s tjtj t 22exp/26 exp(4) /10r tjtj tt WDF of s(t), WDF of r(t), WDF of s(t) + r(t) -10-50510-4-2024-10-50510-4-2024-10-50510-4-2024V-D Examples of the WDF 124Simulations x(t) = cos(2t) = 0.5exp(j2t) + exp(-j2t)by the WDF by the Gabor transform 0246810-505t-axis f-axis 0246810-505f-axis
8、t-axis f-axisf-axist-axist-axis1-11-1125 (5)/4)x tt : rectangular function by the WDF by the Gabor transform 0246810-5-4-3-2-101234f-axis t-axis 0246810-505f-axis t-axis f-axisf-axist-axist-axis126 0246810-5-4-3-2-101234f-axis t-axis 0246810-505f-axis t-axis 3exp( (5)6)x tj tjt by the WDF by the Gab
9、or transform f-axisf-axist-axist-axis127 2exp(5)x tt0246810-5-4-3-2-101234f-axis t-axis 0246810-505f-axis t-axis Gaussian function: 22FTtfee Gaussian functions T-F area is minimal. by the WDF by the Gabor transform f-axisf-axist-axist-axis128 , (using = /2 )Sampling: t = nt, f = mf, = pt When x(t) i
展开阅读全文