书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型信号处理课件:chapter 6 Wigner Distribution Function.ppt

  • 上传人(卖家):罗嗣辉
  • 文档编号:2040704
  • 上传时间:2022-01-19
  • 格式:PPT
  • 页数:28
  • 大小:687KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《信号处理课件:chapter 6 Wigner Distribution Function.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    信号处理课件:chapter Wigner Distribution Function 信号 处理 课件 chapter
    资源描述:

    1、117V. Wigner Distribution Function Definition 1: Definition 2: Another way for computation Definition 1:Definition 2:222jfxWt fx txted*,/*,/ 2/ 2jxWtx txtedV-A Wigner Distribution Function (WDF) 222jtxWt fXfXfed*,/22jtxWtXXed*,/ where X(f) is the Fourier transform of x(t)118Main ReferenceRef S. Qian

    2、 and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Chap. 5, Prentice Hall, N.J., 1996. Other ReferencesRef E. P. Wigner, “On the quantum correlation for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749-759, 1932. Ref T. A. C. M. Classen and W. F. G. Mecklenbrauker, “The W

    3、igner distributionA tool for time-frequency signal analysis; Part I,” Philips J. Res., vol. 35, pp. 217-250, 1980. Ref F. Hlawatsch and G. F. BoudreauxBartels, “Linear and quadratic time-frequency signal representation,” IEEE Signal Processing Magazine, pp. 21-67, Apr. 1992.Ref R. L. Allen and D. W.

    4、 Mills, Signal Analysis: Time, Frequency, Scale, and Structure, Wiley-Interscience, NJ, 2004.119The operators that are related to the WDF:(a) Signal auto-correlation function: (b) Spectrum auto-correlation function: (c) Ambiguity function (AF): ,/2/2xCtx txt,/2/2xSfX fXf*2,/2/2jtxAx txtedt Ax(, )FTf

    5、FTt FTf IFTtSx(, f )IFTtIFTf Cx(t, )Wx(t, f )120V-B Why the WDF Has Higher Clarity?If x(t) = exp(j2 h t)2(/2)2(/2)2222(),()jh tjh tjfxjhjfjfhWt feeedeededfh Comparing: for the case of the STFT Due to signal auto-correlation function121If x(t) = (t) 22442242244jfxjfjt fjt fWt fttedttedt et et ,/122If

    6、 h(t) = g(t) + s(t) cross terms*2,/2/2jfxWt fx txted *2222222,/2/2/2/2/2/2|/2/2|/2/2 /2/2/2/2 |,|,jfhjfjfgsWt fh thtedg ts tgtstedg tgts tstg tstgts tedWt fW t 2 /2/2/2/2jffg tstgts ted V-C The WDF is not a Linear Distribution123 for 9 t 1, s(t) = 0 otherwise, f (t) = s(t) + r(t) 橫軸: t-axis, 縱軸: f -

    7、axis 2exp/103s tjtj t 22exp/26 exp(4) /10r tjtj tt WDF of s(t), WDF of r(t), WDF of s(t) + r(t) -10-50510-4-2024-10-50510-4-2024-10-50510-4-2024V-D Examples of the WDF 124Simulations x(t) = cos(2t) = 0.5exp(j2t) + exp(-j2t)by the WDF by the Gabor transform 0246810-505t-axis f-axis 0246810-505f-axis

    8、t-axis f-axisf-axist-axist-axis1-11-1125 (5)/4)x tt : rectangular function by the WDF by the Gabor transform 0246810-5-4-3-2-101234f-axis t-axis 0246810-505f-axis t-axis f-axisf-axist-axist-axis126 0246810-5-4-3-2-101234f-axis t-axis 0246810-505f-axis t-axis 3exp( (5)6)x tj tjt by the WDF by the Gab

    9、or transform f-axisf-axist-axist-axis127 2exp(5)x tt0246810-5-4-3-2-101234f-axis t-axis 0246810-505f-axis t-axis Gaussian function: 22FTtfee Gaussian functions T-F area is minimal. by the WDF by the Gabor transform f-axisf-axist-axist-axis128 , (using = /2 )Sampling: t = nt, f = mf, = pt When x(t) i

    10、s not a time-limited signal, it is hard to implement. *2,/2/2jfxWt fx txted*4,2jfxWt fx txted,2()()exp4xtftttftpWnmxnpxnpjmp V-E Digital Implementation of the WDF 129Suppose that x(t) = 0 for t n2t x(t)n1tn2t()()0ttxnpxnpif n + p n1, n2 or n p n1, n2 p 的範圍的問題的範圍的問題 (當當 n 固定時固定時)n1 n + p n2 n1 n p n2

    11、 n n1 n p n2 n1 n p n2 n, n n2 p n n1 max(n1 n , n n2) p min(n2 n , n n1) min(n2 n , n n1) p min(n2 n , n n1) nt130 x(t)n1tn2tntmin(n2 n , n n1) p min(n2 n , n n1) 注意:當 n n2 或 n n1 時, 將沒有 p 能滿足上面的不等式 (n2 n)t , (n n1 )t : 離兩個邊界的距離(n n1)t (n2 n )t131,2()()exp4QxtftttftpQWnmxnpxnpjmp Q = min(n2n, nn1).

    12、 p Q, Q, n n1, n2, If x(t) = 0 for t n2t possible for implementationMethod 1: Direct Implementation (brute force method)T點 F點唯一的限制條件?132When and N 2Q+112tfN 2,2()()mpNQjxtftttpQWnmxnpxnpe Method 2: Using the DFTq = p+Q p = q Q2220,2()()mQmqNNQjjxtftttqWnmexnqQxnqQe 22110,2mQmqNNNjjxtftqWnmec q e 1()

    13、()ttc qxnqQxnqQfor 0 q 2Q 10c q for 2Q+1 q N1Q = min(n2n, nn1). n n1, n2,3 大限制條件133假設 t = n0t, (n0+1) t, (n0+2) t, , n1t f = m0 f, (m0+1) f, (m0+2) f, , m1 fStep 1: Calculate n0, n1, m0, m1, NStep 2: n = n0Step 3: Determine QStep 4: Determine c1(q) Step 5: C1(m) = FFTc1(q)Step 6: Convert C1(m) into

    14、C( nt, mf)Step 7: Set n = n+1 and return to Step 3 until n = n1. 134,2()()exp4QxtftttftpQWnmxnpxnpjmp 222222 (),2()()tftftfQjmjpjp mxtftttpQWnmexnpxnpee Step 1 Step 2 Step 3 221,()()tfjpttx n pxnpxnpe 21,n Qp n QXn mxp c mp 22tfjmc me 222,2,tfjmtftX nmeXn m Method 3: Using the Chirp Z Transform 135V

    15、-F Properties of the WDF(1) Projection property (2) Energy preservation property (3) Recovery property x*(0) 已知 (4) Mean condition frequency and mean condition timeIf , then (5) Moment properties , 2,xx tWt f df 2,xXfWt f dt 2/2,0jf txWtf edfx tx 2,/20jf txWt fedtXfX 2jtx tx te 2jfXfXfe 2,xtx tf Wt

    16、fdf 2,xfXft Wt fdt2,( )nnxt Wt f dtdftx tdt 2,( )nnxf Wt f dtdffX fdf 22,xWt f dtdfx tdtXfdf 136(6) Wx(t, f ) is real(7) Region properties If x(t) = 0 for t t2 then Wx(t, f ) = 0 for t t2 If x(t) = 0 for t t1 then Wx(t, f ) = 0 for t t1(8) Multiplication theoryIf , then (9) Convolution theoryIf , th

    17、en(10) Correlation theoryIf , then y tx t h t,yxhWt fWtWt fd y tx thd,yxhWt fWfWtfd y tx thd,yxhWt fWfWtfd ( ,) = ( ,)xxW t fW t f137The STFT (including the rec-STFT, the Gabor transform) does not have real region, multiplication, convolution, and correlation properties. (11) Time-shifting property

    18、If , then(12) Modulation property If , then 0y tx tt0,yxWt fWttf 0exp2y tjf t x t0,yxWt fWt ff138 Try to prove of the projection and recovery properties Why the WDF is always real? What are the advantages and disadvantages it causes?139*2,/2/2jfxWt fx txtedThe importance of region property Proof of the region properties If x(t) = 0 for t t0, x(t + /2) = 0 for (t t0)/2,Therefore, if t t0 B, B is positive.If B t2 t1144(3) t = (t1 + t2)/2(1) t = t1(2) t = t2第一項第一項第一項第二項第二項第二項第二項第二項第二項-axis-axis-axis-axis-axis-axis2t22t12t12t2002t12t202t22t1t2t1t2t1t1t2t1t2BBBB

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:信号处理课件:chapter 6 Wigner Distribution Function.ppt
    链接地址:https://www.163wenku.com/p-2040704.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库