信号处理课件:Chapter 3 kalman filter.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《信号处理课件:Chapter 3 kalman filter.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信号处理课件:Chapter kalman filter 信号 处理 课件 Chapter
- 资源描述:
-
1、第三章 卡尔曼滤波(The Kalman filtering) 第一节卡尔曼滤波信号模型第二节 卡尔曼滤波方法第三节 卡尔曼滤波的应用1、信号模型信号模型状态方程和量测方程状态方程和量测方程 维纳滤波的模型:信号可以认为是维纳滤波的模型:信号可以认为是由白噪声激励一个线性系统的由白噪声激励一个线性系统的响应,假设响应和激励的时域关系可以响应,假设响应和激励的时域关系可以用下式表示:用下式表示: (6-52)上式也就是一阶上式也就是一阶AR模型。模型。 )(ns)(1nw)(zA) 1() 1()(1nwnasns 在卡尔曼滤波中信号被称为是状态变量,用矢量的形式表示为,激励信号也用矢量表示为,
2、激励和响应之间的关系用传递矩阵来表示, 得出状态方程: (6-53) 上式表示的含义就是在k时刻的状态可以由它的前一个时刻的状态来求得,即认为k1时刻以前的各状态都已记忆在状态中了 )(nsS(k)(1nw(k)w1A(k)1)(kw1)A(k)S(kS(k)1S(k)1)S(k 1)S(k卡尔曼滤波是根据系统的量测数据(即观测数据)对系统的运动进行估计的,所以除了状态方程之外,还需要量测方程。 在卡尔曼滤波中,用表示量测到的信号矢量序列,表示量测时引入的误差矢量,则量测矢量与状态矢量之间的关系可以写成 (6-54)w(k)S(k)X(k)上式和维纳滤波的概念上是一致的,也就是说卡尔曼滤波的一
3、维信号模型和维纳滤波的信号模型是一致的。把式(6-55)推广就得到更普遍的多维量测方程 (6-55)上式中的称为量测矩阵,它的引入原因是,量测矢量的维数不一定与状态矢量的维数相同,因为我们不一定能观测到所有需要的状态参数。 w(k)S(k)X(k)w(k)C(k)S(k)X(k)信号模型信号模型根据状态方程和量测方程,卡尔曼滤波的信号模型,如图6.12所示。图6.12 卡尔曼滤波的信号模型1)(kw1)A(k)S(kS(k)1w(k)C(k)S(k)X(k)S(k)C(k)1)A(k 1zw(k)(k)w1X(k)1)S(k 2、卡尔曼滤波方法卡尔曼滤波方法(The method of Kal
4、man filtering)卡尔曼滤波的一步递推法模型卡尔曼滤波的一步递推法模型把状态方程和量测方程重新给出:把状态方程和量测方程重新给出: (6-56) (6-57)假设信号的上一个估计值已知,现在的问题就是如何来求当前时刻的估计值。 1)(kw1)A(k)S(kS(k)1w(k)C(k)S(k)X(k)1)(kS(k)S 用上两式得到的和分别用和表示,得: (6-58) (6-59) 必然,观测值和估计值之间有误差,它们之间的差称为新息(innovation): (6-60)显然,新息的产生是由于我们前面忽略了与所引起的 1)(kSA(k)(k)S1)(kSC(k)A(k)(k)SC(k)
5、(k)XX(k)(k)X(k)X(k)XX(k)(k)X(k)w1w(k) 用新息乘以一个修正矩阵,用它来代替式(656)的来对进行估计: (6-61)由(656)(661)可以画出卡尔曼滤波对进行估计的递推模型,如图6.13所示 (k)XH(k)(k)w1S(k)(k)XH(k)1)(kSA(k)(k)S1)(kSC(k)A(k)H(K)X(k)1)(kSA(k)S(k) 输入为观测值,输出为信号估计值。图1 卡尔曼滤波的一步递推法模型X(k)(k)S(k)SC(k)A(k)1zX(k)1)(kSH(k)(k)X(k)X卡尔曼滤波的递推公式卡尔曼滤波的递推公式从图1容易看出,要估计出就必须要
6、先找到最小均方误差下的修正矩阵,结合式(661)、(656)、(657)得:(6-62)根据上式来求最小均方误差下的,然后把求到的代入(661)则可以得到估计值。(k)SH(k)1)(kSC(k)A(k)w(k)(k)H(K)C(k)S1)(kSA(k)(k)S1)(kSC(k)A(k)w(k)1)(kw1)(kSA(k)H(K)C(k)1)(kSA(k)1H(k)w(k)1)(kw1)(kS(k)H(K)C(k)AH(k)C(k)1)I(kSA(k)1H(k)H(k)(k)S 设真值和估计值之间的误差为:误差是个矢量,因而均方误差是一个矩阵,用表示。把式(662)代入得 (6-63)均方误差
7、矩阵: (6-64)表示对向量取共轭转置。 (k)SS(k)(k)S(k)(k)SS(k)(k)SH(k)w(k)1)(kw1)(kS1)A(k)S(kH(K)C(k)I1(k)S(k)SE(k)为了计算方便,令 (6-65)找到和均方误差矩阵的关系: (6-66)把式(663)代入式(664),最后化简得: (k)S(k)(S(k)SE(S(k)(k)1)(kSA(k)1)(kw1)k1)(A(k)S(kSA(k)1)(kw1)E(A(k)S(k(k)111)(k1)w(kEwA(k)1)(kS1)1)(S(k(kS1)A(k)ES(k111)Q(k1)A(k)A(k)(k(k)S(k)SE
8、(k)k)H(k)R(k)H(H(k)C(k)1)IQ(k1)A(k)A(k)(kH(K)C(k)I 把式(666)代入(667)得令,代入上式化简: (6-68)要使得均方误差最小,则必须 (k)k)H(k)R(k)H(H(k)C(k)(k)IH(K)C(k)IR(k)H(k)(k)C(k)H(k)C(k)H(k)(k)C(k)(k)H(K)C(k)(k)SSR(k)(k)C(k)C(k)(k)C(k)U(k)H(k)H(k)SSUH(k)H(K)U(k)111)U(SH(k)S)U(SH(k)SU)U(SS(k)01)U(SH(k)S求得最小均方误差下的修正矩阵为: (6-69)把上式代入
展开阅读全文