概率统计课件:2011 第2章.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率统计课件:2011 第2章.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率统计课件:2011 第2章 概率 统计 课件 2011
- 资源描述:
-
1、第二章第二章 一维随机变量及其分布一维随机变量及其分布第一节 随机变量第二节 离散型随机变量及其分布律第三节 随机变量的分布函数第四节 连续型随机变量及其概率密度第五节 随机变量的函数的分布v许多事件的概率不能用等可能概型许多事件的概率不能用等可能概型的计算公式,应该如何计算呢?的计算公式,应该如何计算呢? E6在一批灯泡中任取一只,测试其寿命在一批灯泡中任取一只,测试其寿命v只利用了初等数学的知识,如何把只利用了初等数学的知识,如何把微积分这些工具引入到这门课程呢?微积分这些工具引入到这门课程呢? 例例1 将一枚硬币抛掷将一枚硬币抛掷3次次. 以以X记三次抛掷中出现记三次抛掷中出现H的总数的
2、总数, 则对样本空间则对样本空间S=e中的每一个样本点中的每一个样本点e, X都有一个数与之对应都有一个数与之对应, 即有即有样样本本点点HHH HHT HTH THH HTT THTTTHTTTX的的值值322211101 随机变量定义定义 设设X X (e e )是定义在样本空间是定义在样本空间S S上的实上的实值函数,称值函数,称X X (e )为随机变量为随机变量. .随机变量通常用大写字母随机变量通常用大写字母X,Y,Z,W,.等等表示表示S1e2e3ex例例1 将一枚硬币抛掷将一枚硬币抛掷3次次. 以以X记三次抛掷中出现记三次抛掷中出现H的次数的次数, 则对样本空间则对样本空间S=
3、e中的每一个样本点中的每一个样本点e, X都有一个数与之对应都有一个数与之对应, 即有即有样样本本点点HHH HHT HTH THH HTT THTTTHTTTX的的值值32221110例例1 1 一射手对目标进行射击,击中目标记为一射手对目标进行射击,击中目标记为1分,分,未中目标记为未中目标记为0分分.设设X表示该射手在一次射击中的得表示该射手在一次射击中的得分,它是一个随机变量,可以表示为分,它是一个随机变量,可以表示为 ., 0, 1未中击中;X例例2 2 观察一个电话交换台在一段时间(观察一个电话交换台在一段时间(0,T)内接)内接到的呼叫次数到的呼叫次数如果用如果用X表示呼叫次数,
4、表示呼叫次数,那么那么 表示一随机事件,表示一随机事件,显然显然 也表示一随机事件也表示一随机事件), 2 , 1 , 0(kkX), 2 , 1 , 0(kkX 有些随机变量有些随机变量, 它全部可能取到的值它全部可能取到的值是有限个或可列无限多个是有限个或可列无限多个, 这种随机变量这种随机变量称为称为离散型随机变量离散型随机变量. 2 离散型随机变量及其分布律离散型随机变量及其分布律 记记X为掷骰子出现的点数为掷骰子出现的点数; 记记Y为灯泡的寿命为灯泡的寿命; 要掌握一个离散型随机变量要掌握一个离散型随机变量X的统计规律的统计规律, 必须且只需知道必须且只需知道X的所有可能取的值及取每
5、的所有可能取的值及取每一个可能值的概率一个可能值的概率. 设设X所有可能取的值为所有可能取的值为xk(k=1,2,.), 而而PX=xk=pk, k=1,2,.(2.1) pk满足如下两个条件满足如下两个条件) 3 . 2(. 1, 2)2 . 2( ;, 2 , 1, 0, 11kkkpkp称称(2.1)式式为离散型随机变量为离散型随机变量X的分布律的分布律. 分布律也可用表格的形式来表示分布律也可用表格的形式来表示:Xx1x2.xn.pkp1p2.pn.(2.4)v掷一颗均匀的骰子出现的点数掷一颗均匀的骰子出现的点数X为为一个离散型随机变量,其分布律为一个离散型随机变量,其分布律为vP(X
6、=k)=1/6 k=1,2,6X123456pk1/61/61/61/61/61/6例例1 设一汽车在开往目的地的道路上需经过设一汽车在开往目的地的道路上需经过四组信号灯四组信号灯, 每组信号灯以每组信号灯以p=1/2概率禁止汽概率禁止汽车通过车通过. 以以X表示汽车首次停下时表示汽车首次停下时, 它已通过它已通过的信号灯组数的信号灯组数(设各组信号灯的工作是相互独设各组信号灯的工作是相互独立的立的), 求求X的分布律的分布律.PX=k=(1-p)kp, k=0,1,2,3, PX=4=(1-p)4. X 01234pkp (1- -p)p(1- -p)2p(1- -p)3p(1- -p)4列
7、表法列表法列式法列式法v课堂练习课堂练习 P55第第2题(题(1)(一一) (0-1)分布分布 设随机变量设随机变量X只可能取只可能取0与与1 两个值两个值, 它的分布律是它的分布律是 P(X=k)=pk(1-p)1-k, k=0,1(0p0是常数是常数. 则称则称X服从参数为服从参数为 的泊松分的泊松分布布, 记为记为Xp p( ).泊松分布的背景及应用泊松分布的背景及应用二十世纪初卢瑟福和盖克两位科学家在观察二十世纪初卢瑟福和盖克两位科学家在观察与分析放射性物质放出的粒子个数的情况时与分析放射性物质放出的粒子个数的情况时, ,他他们做了们做了2608次观察次观察( (每次时间为每次时间为7
8、.5秒秒) )发现放射发现放射性物质在规定的一段时间内性物质在规定的一段时间内, , 其放射的粒子数其放射的粒子数X 服从泊松分布服从泊松分布. . 电话呼唤次数电话呼唤次数交通事故次数交通事故次数商场接待的顾客数商场接待的顾客数地震地震火山爆发火山爆发特大洪水特大洪水泊松定理泊松定理 设设 0是一个常数是一个常数, n是任意正是任意正整数整数, 设设npn= , 则对于任一固定的非负则对于任一固定的非负整数整数k, 有有24上述定理表明当上述定理表明当n很大很大, p很小很小(np= )时时有以下近似式有以下近似式例例5 计算机硬件公司制造某种特殊计算机硬件公司制造某种特殊型号的微型芯片型号
9、的微型芯片,次品率达次品率达1%, 各芯各芯片成为次品相互独立片成为次品相互独立. 求在求在1000只产只产品中至少有品中至少有2只次品的概率只次品的概率. 以以X记产品中的次品数记产品中的次品数, Xb(1000, 0.001).25v分布律用来描述离散型随机变量分布律用来描述离散型随机变量的统计规律,那么对于非离散型的统计规律,那么对于非离散型随机变量呢?随机变量呢?v关注随机变量落在某个区间的概关注随机变量落在某个区间的概率,如何更方便地求出?率,如何更方便地求出?定义定义 设设X是一个随机变量是一个随机变量, x是是任意实数任意实数. 函数函数F(x)= PX x,称为称为X的分布函数
10、的分布函数.3 随机变量的分布函数随机变量的分布函数分布函数分布函数F(x)具有以下的基本性质具有以下的基本性质: 1. F(x)是一个不减函数是一个不减函数. 1)(lim)(, 0)(lim)(-xFFxFFxx 3. F(x+0)=F(x), 即即F(x)是右连续的是右连续的.2. 0 F(x) 1, 且且xX例例1 设随机变量设随机变量X的分布律为的分布律为X- -123pk1/41/21/4求求X的分布函数。的分布函数。结果结果432141,1时当-x,21时当-x)(xXPxFx-12)(xXPxF1-XP;41xxiip)(xXPxFxxiip1-XP2XP; 0,32时当 x3
展开阅读全文