书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型微积分下册课件:2-4.PPT

  • 上传人(卖家):罗嗣辉
  • 文档编号:2039851
  • 上传时间:2022-01-19
  • 格式:PPT
  • 页数:28
  • 大小:620.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《微积分下册课件:2-4.PPT》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    微积分 下册 课件
    资源描述:

    1、),(),(yxfyxxf xyxfx ),(),(),(yxfyyxf yyxfy ),( 二二元元函函数数对对x和和对对y的的偏偏微微分分 二二元元函函数数对对x和和对对y的的偏偏增增量量由一元函数微分学中增量与微分的关系得由一元函数微分学中增量与微分的关系得一、全微分的定义一、全微分的定义2.4 2.4 全微分及其应用全微分及其应用 如果函数如果函数),(yxfz 在点在点),(yx的某邻域内的某邻域内有定义,并设有定义,并设),(yyxxP 为这邻域内的为这邻域内的任意一点,则称这两点的函数值之差任意一点,则称这两点的函数值之差 ),(),(yxfyyxxf 为函数在点为函数在点 P对

    2、应于自变量增量对应于自变量增量yx ,的全增的全增量,记为量,记为z , 即即 z =),(),(yxfyyxxf 全增量全增量的概念的概念 如果函数如果函数),(yxfz 在点在点),(yx的全增量的全增量),(),(yxfyyxxfz 可以表示为可以表示为)( oyBxAz ,其中,其中BA,不依赖于不依赖于yx ,而仅与而仅与yx,有关,有关,22)()(yx ,则称函数则称函数),(yxfz 在点在点),(yx可微分,可微分,yBxA 称为函数称为函数),(yxfz 在点在点),(yx的的全微分全微分,记为,记为dz,即,即 dz= =yBxA . .全微分的定义全微分的定义 函函数数

    3、若若在在某某区区域域 D 内内各各点点处处处处可可微微分分,则则称称这这函函数数在在 D 内内可可微微分分. 如果函数如果函数),(yxfz 在点在点),(yx可微分可微分, 则则函数在该点连续函数在该点连续.事实上事实上),( oyBxAz , 0lim0 z ),(lim00yyxxfyx ),(lim0zyxf ),(yxf 故故函函数数),(yxfz 在在点点),(yx处处连连续续.二、可微的条件二、可微的条件 定定理理 1 1(必必要要条条件件)如如果果函函数数),(yxfz 在在点点),(yx可可微微分分,则则该该函函数数在在点点),(yx的的偏偏导导数数xz 、yz 必必存存在在

    4、,且且函函数数),(yxfz 在在点点),(yx的的全全微微分分为为 yyzxxzdz 证证如如果果函函数数),(yxfz 在在点点),(yxP可可微微分分, ),(yyxxPP的的某某个个邻邻域域)( oyBxAz 总成立总成立,当当0 y时,上式仍成立,时,上式仍成立,此时此时| x ,),(),(yxfyxxf |),(|xoxA Axyxfyxxfx ),(),(lim0,xz 同理可得同理可得.yzB 一元函数在某点的导数存在一元函数在某点的导数存在 微分存在微分存在多元函数的各偏导数存在多元函数的各偏导数存在 全微分存在全微分存在例如,例如,.000),(222222 yxyxyx

    5、xyyxf在点在点)0 , 0(处有处有0)0 , 0()0 , 0( yxff)0 , 0()0 , 0(yfxfzyx ,)()(22yxyx 如如果果考考虑虑点点),(yxP 沿沿着着直直线线xy 趋趋近近于于)0 , 0(,则则 22)()(yxyx 22)()(xxxx ,21 说说明明它它不不能能随随着着0 而而趋趋于于 0,0 当当 时,时,),()0 , 0()0 , 0( oyfxfzyx 函数在点函数在点)0 , 0(处不可微处不可微.说明说明:多元函数的各偏导数存在并不能保证全:多元函数的各偏导数存在并不能保证全 微分存在,微分存在,定理定理(充分条件)如果函数(充分条件

    6、)如果函数),(yxfz 的偏的偏导数导数xz 、yz 在点在点),(yx连续,则该函数在点连续,则该函数在点),(yx可微分可微分证证),(),(yxfyyxxfz ),(),(yyxfyyxxf ),(),(yxfyyxf ),(),(yyxfyyxxf xyyxxfx ),(1 )10(1 在第一个方括号内,应用拉格朗日中值定理在第一个方括号内,应用拉格朗日中值定理xxyxfx 1),( (依偏导数的连续性)(依偏导数的连续性)且且当当0, 0 yx时时,01 .其中其中1 为为yx ,的函数的函数,xxyxfx 1),( yyyxfy 2),( z 2121 yx, 00 故函数故函数

    7、),(yxfz 在点在点),(yx处可微处可微.同理同理),(),(yxfyyxf ,),(2yyyxfy 当当0 y时,时,02 ,习惯上,记全微分为习惯上,记全微分为.dyyzdxxzdz 全微分的定义可推广到三元及三元以上函数全微分的定义可推广到三元及三元以上函数.dzzudyyudxxudu 通常我们把二元函数的全微分等于它的两个通常我们把二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合偏微分之和这件事称为二元函数的微分符合叠加原理也适用于二元以上函数的情况叠加原理也适用于二元以上函数的情况例例 1 1 计算函数计算函数xyez 在点在点)1 , 2(处的全微分处的全

    8、微分.解解,xyyexz ,xyxeyz ,2)1 ,2(exz ,22)1 ,2(eyz .222dyedxedz 所求全微分所求全微分例例 2 2 求函数求函数)2cos(yxyz ,当,当4 x, y,4 dx, dy时的全微分时的全微分.解解),2sin(yxyxz ),2sin(2)2cos(yxyyxyz dyyzdxxzdz),4(),4(),4( ).74(82 例例 3 3 计计算算函函数数yzeyxu 2sin的的全全微微分分.解解, 1 xu,2cos21yzzeyyu ,yzyezu 所求全微分所求全微分.)2cos21(dzyedyzeydxduyzyz 例例 4 4

    9、 试证函数试证函数 )0 , 0(),(, 0)0 , 0(),(,1sin),(22yxyxyxxyyxf在在点点)0 , 0(连续且偏导数存在,但偏导数在点连续且偏导数存在,但偏导数在点)0 , 0(不连续,而不连续,而f在点在点)0 , 0(可微可微.思路:按有关定义讨论;对于偏导数需分思路:按有关定义讨论;对于偏导数需分 )0 , 0(),( yx,)0 , 0(),( yx讨论讨论.证证令令,cos x,sin y则则22)0,0(),(1sinlimyxxyyx 1sincossinlim20 0 ),0 , 0(f 故函数在点故函数在点)0 , 0(连续连续, )0 , 0(xf

    10、xfxfx )0 , 0()0 ,(lim0, 000lim0 xx同理同理. 0)0 , 0( yf当当)0 , 0(),( yx时,时, ),(yxfx,1cos)(1sin22322222yxyxyxyxy 当当点点),(yxP沿沿直直线线xy 趋趋于于)0 , 0(时时,),(lim)0,0(),(yxfxxx,|21cos|22|21sinlim330 xxxxxx不存在不存在.所以所以),(yxfx在在)0 , 0(不连续不连续.同理可证同理可证),(yxfy在在)0 , 0(不连续不连续.)0 , 0(),(fyxff 22)()(1sinyxyx )()(22yxo 故故),(

    11、yxf在点在点)0 , 0(可微可微. 0)0,0( df多元函数连续、可导、可微的关系多元函数连续、可导、可微的关系函数可微函数可微函数连续函数连续偏导数连续偏导数连续函数可导函数可导三三 全微分在近似计算中的应用全微分在近似计算中的应用都较小时,有近似等式都较小时,有近似等式连续,且连续,且个偏导数个偏导数的两的两在点在点当二元函数当二元函数yxyxfyxfyxPyxfzyx ,),(),(),(),(.),(),(yyxfxyxfdzzyx 也可写成也可写成.),(),(),(),(yyxfxyxfyxfyyxxfyx 例例 5 5 计算计算02. 2)04. 1(的近似值的近似值.解解

    12、.),(yxyxf 设函数设函数.02. 0,04. 0, 2, 1 yxyx取取, 1)2 , 1( f,),(1 yxyxyxf,ln),(xxyxfyy , 2)2 , 1( xf, 0)2 , 1( yf由公式得由公式得02. 0004. 021)04. 1(02. 2 .08. 1 、多元函数全微分的概念;、多元函数全微分的概念;、多元函数全微分的求法;、多元函数全微分的求法;、多元函数连续、可导、可微的关系、多元函数连续、可导、可微的关系(注意:与一元函数有很大区别)(注意:与一元函数有很大区别)三、小结 函数函数),(yxfz 在点在点),(00yx处可微的充分条件是处可微的充分

    13、条件是:(1)),(yxf在点在点),(00yx处连续;处连续;(2)),(yxfx 、),(yxfy 在点在点),(00yx的的 某邻域存在;某邻域存在;(3)yyxfxyxfzyx ),(),(, 当当0)()(22 yx时是无穷小量;时是无穷小量;(4)22)()(),(),(yxyyxfxyxfzyx , 当当0)()(22 yx时是无穷小量时是无穷小量.思考题思考题一、一、 填空题填空题: :1 1、 设设xyez , ,则则 xz_; yz_; dz_._.2 2、 若若)ln(222zyxu , ,则则 du_._.3 3、 若函数若函数xyz , ,当当1, 2 yx, ,2

    14、. 0, 1 . 0 yx时时, ,函数的全增量函数的全增量 z_;_;全微分全微分 dz_._.4 4、 若 函 数若 函 数yxxyz , , 则则xz对对的 偏 增 量的 偏 增 量 zx_;_; xzxx0lim _. _.练练 习习 题题二、二、 求函数求函数)1ln(22yxz 当当, 1 x 2 y时的全微分时的全微分. .三、三、 计算计算33)97. 1()02. 1( 的近似值的近似值. .四、四、 设有一无盖园柱形容器设有一无盖园柱形容器, ,容器的壁与底的厚度均为容器的壁与底的厚度均为cm1 . 0,内高为,内高为cm20, ,内半径为内半径为cm4, ,求容器外壳体求

    15、容器外壳体积的近似值积的近似值. .五、五、 测得一块三角形土地的两边边长分别为测得一块三角形土地的两边边长分别为m1 . 063 和和m1 . 078 , ,这两边的夹角为这两边的夹角为0160 . .试求三角形面积试求三角形面积的近似值的近似值, ,并求其绝对误差和相对误差并求其绝对误差和相对误差. .六六、利利用用全全微微分分证证明明: :乘乘积积的的相相对对误误差差等等于于各各因因子子的的相相对对误误差差之之和和; ;商商的的相相对对误误差差等等于于被被除除数数及及除除数数的的相相对对误误差差之之和和. .七、求函数七、求函数 ),(yxf 0,00,1sin)(22222222yxy

    16、xyxyx 的偏导数的偏导数, ,并研究在点并研究在点)0 , 0(处偏导数的连续性及处偏导数的连续性及 函数函数),(yxf的可微性的可微性. .一、一、1 1、)(1,1,2dydxxyexexexyxyxyxy ;2 2、222)(2zyxzdzydyxdx ; 3 3、-0.119,-0.125-0.119,-0.125;4 4、yyxyy1,)1( . .二、二、dydx3231 . . 三、三、2.95. 2.95. 四、四、3cm3 .55. .五、五、%.30. 1 ,m6 .27,m212822七、七、),(),(yxfyxfyx 在在)0 , 0(处均不连续处均不连续, , ),(yxf在点在点(0,0)(0,0)处可微处可微. .练习题答案练习题答案

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:微积分下册课件:2-4.PPT
    链接地址:https://www.163wenku.com/p-2039851.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库