微积分上册课件:2.2函数的极限.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《微积分上册课件:2.2函数的极限.ppt》由用户(罗嗣辉)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分上册课件:2.2 函数的极限 微积分 上册 课件 2.2 函数 极限
- 资源描述:
-
1、第二节 函数的极限一、自变量趋向无穷大时函数的极限二、自变量趋向有限值时函数的极限三、函数极限的性质四、小结第二章( ),yf x 对对于于函函数数 000(4) xxxxx从从 的的左左右右两两侧侧趋趋向向于于00000(5)(xxxxxxxxx 且且即即 从从右右侧侧趋趋于于 )00000(6)(xxxxxxxxx 且且即即 从从左左侧侧趋趋于于 ) (1) xxx 既既可可取取正正值值也也可可取取负负值值且且无无限限增增大大(2)(xx 取取正正值值无无限限增增大大) (3) xxx 取取负负值值且且无无限限增增大大自变量变化过程的六种形式:limnnxa :nx对对于于数数列列0,nN
2、nNxa 使使得得当当时时恒恒有有( )( )f xAf xA 表表示示任任意意小小xXx 表表示示的的过过程程如何用数学语言刻划函数如何用数学语言刻划函数“无限接近无限接近”.一、自变量趋向无穷大时函数的极限Xx说说明明 充充分分大大的的程程度度0, 定定义义X 0,0,( )XxXf xA使使得得当当时时 恒恒有有 Axfx)(lim:(),)( ,)()fD fRD f 设设是是一一个个函函数数,(-,(-:.10情形情形x.)(, 0, 0 AxfXxX恒有恒有时时使当使当:.20情形情形xlim( )xf xA.)(, 0, 0 AxfXxX恒有恒有时时使当使当lim( )xf xA
3、另两种情形另两种情形: Axfx)(lim:定定理理lim( )lim( ).xxf xf xA 几何解释几何解释:A A X X.2,)(,的带形区域内的带形区域内宽为宽为为中心线为中心线直线直线图形完全落在以图形完全落在以函数函数时时或或当当 AyxfyXxXxA例例1. 0sinlim xxx证明证明证证sinsin0 xxxx1x 1x 即即, 0 ,1 X取取时恒有时恒有则当则当Xx sin0,xx 要要使使. 0sinlim xxx故故coslim0 xxx 证证明明例例2,0sin xx1x 只只要要二、自变量趋向有限值时函数的极限;)()(任意小任意小表示表示AxfAxf 00
4、0.xxxx 表表示示的的过过程程x0 x 0 x 0 x ,0邻域邻域的去心的去心点点 x.0程度程度接近接近体现体现xx 0, 定义定义 00,0,0,( ).xxf xA 使使得得当当时时恒恒有有 0:fU xR设设是是一一个个函函数数几何解释几何解释:)(xfy AAA0 x0 x0 xxyo.2,)(,0的带形区域内的带形区域内宽为宽为为中心线为中心线线线图形完全落在以直图形完全落在以直函数函数域时域时邻邻的去心的去心在在当当 Ayxfyxx注意:注意:00001. ( )( )( )( );f xxxf xxf xxf xx在在时时的的极极限限只只与与在在的的某某去去心心 邻邻域域
5、的的值值有有关关,与与在在处处是是否否有有定定义义或或在在处处取取值值的的大大小小无无关关. 2有有关关与与任任意意给给定定的的正正数数 例例3).( ,lim0为常数为常数证明证明CCCxx 证证Axf )(,成立成立 0 .lim0CCxx 例例4.lim00 xxxx 证明证明证证0( )f xAxx, 取取00,xx 当当时时0)(xxAxf ,成立成立 .lim00 xxxx Axf)(CC 0故,0对任意的当00 xx时 , 总有,0,0故例例5. 211lim21 xxx证明证明证证21( )21xf xAx 0, 1,x 只只要要,00时时当当 xx(函数在点函数在点x=1处没
展开阅读全文